
Lecture 12
Wired Communication:

SPI and I2C

CE346 – Microprocessor System Design

Branden Ghena – Fall 2023

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Sparkfun

Administrivia

• Purchase requests
• Place these! Soon!

• I’m going to put a deadline for initial purchasing soon.

• I’ll bring items to pass out to lab tomorrow
• For stuff I’ve got on hand already

2

Today’s Goals

• Discuss additional wired communication protocols: SPI and I2C

• Understand tradeoffs in design
• UART, SPI, and I2C are each useful for different scenarios

• Explore real-world usage of SPI and I2C

3

4

• SPI

• I2C

• Using SPI and I2C

Outline

UART Pros and Cons

• Pros
• Only uses two wires

• No clock signal is necessary

• Can do error detection with parity bit

• Cons
• Data frame is limited to 8 bits (20% signaling overhead)

• Doesn’t support multiple device interactions (point-to-point only)

• Relatively slow to ensure proper reception

• Let’s get rid of all the cons (by sacrificing on all the pros)

5

Synchronous UART

• USART
• Synchronous/Asynchronous

• Just add a clock line

• Common peripheral in many microcontrollers to allow adaptable
communication
• Could build various protocols (like SPI or UART) on top of it

• Still point-to-point limited in this form

6

DATA

CLK

Transmitter Receiver

b0 b1 b2 b3 b4 b5 b7b6

Synchronous serial communication with a single device

7

Microcontroller

Data Out
Clock

Device 2

Device 1

Device 3

Data In
Clock

Want bi-directional communication, so three wires

8

Microcontroller

Data Out
Data In

Clock

Device 2

Device 1

Device 3

Data In
Data Out
Clock

Wire signals to all devices to form a bus

9

Microcontroller

Data Out
Data In

Clock

Data In
Data Out
Clock

Device 2

Device 1

Device 3

Data In
Data Out
Clock

Data In
Data Out
Clock

Communicating on a bus

How do you distinguish which device you are talking to?

1. GPIO pin for each device
• Signal which device is being communicated with

• Only activates communication on transition of “select” line

• Needs a separate pin for each device

2. Address for each device
• Devices must always listen and then discard messages that aren’t for them

• Need to define packet format so it’s clear where the address is

• Need a method for addressing devices

10

Separate chip select line for each device

11

Microcontroller

Data Out
Data In

Clock
(2) Chip Select
(1) Chip Select
(3) Chip Select

Device 2

Device 1

Device 3

Data In
Data Out
Clock
Chip Select

Data In
Data Out
Clock
Chip Select

Data In
Data Out
Clock
Chip Select

Serial Peripheral Interface (SPI)

• Serial, synchronous, bus
communication protocol

• Single controller with
multiple peripherals
• Within a circuit board

• High-speed
communication
• Multiple Mbps

12

Microcontroller

Serial Data Out
Serial Data In

Serial Clock

Chip Select

Chip Select

Chip Select

Device 2

Device 1

Device 3

Serial Data In
Serial Data Out
Serial Clock

Chip Select

Serial Data In
Serial Data Out
Serial Clock

Chip Select

Serial Data In
Serial Data Out
Serial Clock

Chip Select

A note on outdated notation

• Master/Slave paradigm
• Master is the “Computer” and is in charge of interaction

• Slave is the “Device” and has little control over interaction parameters

• Really common notation in EE side of the world.

• Not intended to be harmful, but also literally inconsiderate.

• Field is changing for the better. It’s going to take some time.
• Controller/Peripheral

• Central/Peripheral

• Device/Peripheral

• Master/Minion

• Primary/Secondary

13

SPI naming schemes

• Historical SPI Naming
• MISO – Master In Slave Out

• MOSI – Master Out Slave In

• SS – Slave Select

• Revised SPI Naming
• SDI – Serial Data In -> also known as CIPO (Controller In, Peripheral Out)

• SDO – Serial Data Out -> also known as COPI (Controller Out, Peripheral In)

• CS – Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi_signal_names

14

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names
https://www.sparkfun.com/spi_signal_names

SPI wiring

• 3+N wires for N peripherals

• SDI – input to the chip

• SDO – output from the chip

• SCK – Serial ClocK

• CS – Chip Select
• Active low signal

• Names are always relative to
this particular chip
• SDO connects to SDI

• SDI connects to SDO

15

Microcontroller

SDO
SDI
SCK

CS

CS

CS

Device 2

Device 1

Device 3

SDI
SDO
SCK

CS

SDI
SDO
SCK

CS

SDI
SDO
SCK

CS

SPI timing diagram

• CS goes low to start
transaction and
high to end

• Data is sent
synchronously with
clock signals

• Capable of full-
duplex transfers
• Both directions at

the same time

16

SCK

SDO

SDI

CS

SPI communication

• Transactions usually
in multiples of bytes
(as many as needed)

• Either bit endianness
is possible
• nRF can do LSb first

OR MSb first

• No need for framing
bits (start/stop)
• CS handles that

17

SPI configurations

• CPOL – is the clock default low or default high

• CPHA – is data read on first edge or second edge

• Peripherals tell you what their configuration is

18

19

SPI data rate

• No particular requirements
• Speed can go as fast as your clock and line capacitance can handle

• Datasheet for devices will specify their speeds
• Sort of standards (less so than UART, for example)

• 700 kbps

• 3.4 Mbps

• 10 Mbps

20

Daisy-chaining SPI

• SPI can also be formed into a ring bus

• Doesn’t save on pins, but does reduce wires…
• At the cost of reliability and speed

• Fairly rare in practice

21

How do we determine when peripheral has information?

• Controller starts/stops SPI
transfers
• Could ask peripheral

periodically

• Peripherals often add
interrupt outputs to signal
controller that an event has
occurred
• More pins, yay!

22

Use Cases

• High-speed peripherals
• Microphone, External ADC, Displays!

• External memory
• Memory chips

• SD cards

• All SD cards support a SPI communication mode

• QSPI – Quad SPI (four SDO lines for more throughput)

• Often used for communication with external memory

23

SPI Pros and Cons

• Pros
• Faster throughput (and no overhead)

• No restrictions on data frame

• No addressing requirements or word size assumptions

• Full duplex transfers

• Cons
• Many pins: 3+N (for N peripherals)

• CS line scales linearly (other signals are a bus)

• Controller must initiate all transfers

• Not designed for multi-controller scenarios

24

Break + relevant xkcd

25https://xkcd.com/927/

26

• SPI

• I2C

• Using SPI and I2C

Outline

Choosing different tradeoffs from other wired communication

• Things we like from SPI
• Communication over a bus

• Synchronous communication

• Things we want from new protocol
• Fewer I/O pins

• Use a single data line for bi-directional communication

• Needs addressing and more specified data frame

• Multiple controllers sharing the bus

• Needs a bus contention solution

27

Bus contention could short a shared bus

• Want to enable multiple controllers

• Problem
• What if they each try to transmit different data?

• At some point, there will be a short-circuit

28

Disconnected I/O pins enable shared communication

• I/O pins often have three states
• High

• Low

• Disconnected
(also known as High-Impedance/High-Z)

• We can use this third state to enable
communication over a shared line
• Low or Disconnected

• Wired-AND

• 1 if they are all disconnected

• 0 if any are low

29

ANDing

Inter-Integrated Circuit (I2C)

• Two-wire, synchronous, bus communication
• Ubiquitous in the embedded world

• De-facto standard for sensors

• Invented and patented by Phillips (now NXP)
• Patent expired in 2004

• Also known as Two-Wire Interface (TWI)
• Occasionally as System Management Bus (SMBus or SMB) but that’s

actually a related but separate thing

30

I2C overview

• SDA – Serial Data

• SCL – Serial Clock
• Usually 100 kHz or 400 kHz

• Communication is a
shared bus between all
controller(s) and
peripheral(s)

• Pull-up resistors for open-
drain communication

31

• SDA and SCL are open-drain
• 1 – high-impedance, let line

float high

• 0 – active drive, pull line low

32

• Pull-up resistor to provide high
signal
• Low enough resistance that current

can flow in a reasonable amount of
time

• Common value: 4.7 kΩ

Open drain bus communication

I2C transactions

• Default
• Both lines float high (pull-up resistor)

• Start condition
• Drive SDA low while SCL is still high

33

I2C transactions

• First byte is chip address + R/W indication
• Address: 7-bit value that needs to be different for each participant

• R/W: 1 for read, 0 for write

• Values are sent MSb first (reverse of other protocols 😱)

34

I2C transactions

• Acknowledgement from peripheral follows each byte
• Controller lets line float high

• Peripheral drives line low to signal receipt of message

35

I2C transactions

• Data frame(s) follow
• Sent as entire bytes, plus and ACK
• As many as needed before Stop condition

• Stop condition
• SDA goes high while SCL is high (normally data only changes when clock is low)

36

Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and
the other wants a high bit?

37

Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and
the other wants a high bit?
• Low bit wins! (so smaller address or data)

• Each controller constantly checks whether SDA matches the
voltage level it expects
• Stops attempting to transmit if it ever does not

• (Only actually needs to check high signals)

38

Repeated start conditions

• Repeated start conditions
allow the bus to be used
again while arbitration was
won

• Trigger another Start
condition without triggering
Stop condition
• Send address again

• Frequently used for write
then read pattern
• Write which value you want
• Then repeated start and read

39

Clock stretching

• Clock is an open-drain
line too
• Either device could

keep it low

• Transaction can be
briefly paused by
holding SCL low

40

ready

Real-world I2C transactions

41

Each I2C device on a bus must have a different address

• Shared addresses would cause both to
respond

• ICs often have one or more address pin(s)
used to select bit(s) of address
• 0 pins: only one may be on bus
• 1 pin: two may be on bus
• 2 pins: four may be on bus

• If no address pins (or not enough), need
an I2C address translator chip
• Translates addresses for one or more

peripheral chips

42

A0 is low: address 1001010x
A0 is high: address 1001011x

Sparkfun Qwiic connect system

• System for wiring multiple prototyping boards together

• Four-pin connector
• VCC (3.3 volts)

• Ground

• SDA

• SCL

• Daisy-chains through boards
• Actually connects to chips in parallel as a bus

43

https://www.sparkfun.com/qwiic

https://www.sparkfun.com/qwiic

System Management Bus (SMBus)

• Related communication specification
• A little more strict in places, but generally interoperable

• Adds ability to broadcast or unicast messages
• Generic addresses for Controller and various peripherals (Battery)

• Adds an open-drain shared interrupt signal
• High-impedance or pull low, just like SDA and SCL

• Allows any device to alert a controller

• Controller has to probe bus to determine which device wants attention

44

I2C use cases

• Various sensors
• Usually low to medium speed

• Even relatively high speed stuff often has I2C for convenience

• Accelerometers and microphones

• Often with intelligent filtering built in

• Communication between microcontrollers
• Either can act as the Controller when necessary

• Commonly exists internally within smartphones and laptops too
• Light sensors, Temperature sensors, etc.

45

I2C Pros and Cons

• Pros
• Wiring is simple

• Only uses two pins

• Very widely supported

• Cons
• Relatively slow communication rate

• Speed versus power use tradeoff (due to pull-down resistor)

• Open collector makes debugging difficult

46

Break + Open Question

• Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

47

Break + Open Question

• Why are SPI and I2C common internally in embedded systems,
but not common externally? (like USB, Ethernet, HDMI, etc.)

• Too slow:

• Especially I2C (100 Kbps compared to 12 Mbps for slowest USB)

• Not robust:

• No effort put into the electrical encoding of data or error checking

• Long external cables lead to additional errors

• Overall: they’re too simple

48

49

• SPI

• I2C

• Using SPI and I2C

Outline

Common sensor interaction pattern

• First write one byte to the device
• This selects what data you want to interact with, called a “register address”

• Second read/write one (or more) bytes
• This is the actual data

• SPI and I2C devices both work this way
• Datasheet will have a list of registers you can read/write

• Each register will have some address: that’s the first byte you write

50

Example: Microbit accelerometer

• Details of each
register on
later pages
show you the
structure of
the data read
or written

51

Register/data pattern in I2C

• I2C is the more difficult of these
• Need some way to tell the device “this transaction is still going”, but switch

from writing to reading

• This is the use of the “repeated start” option
• Continues the “transaction”

52

I2C Read Transaction

• First, write the address of the register you want

• Then, repeated start

• Finally, read the data from the device

53

Peripheral Controls SDA Line

Controller Controls SDA Line

I2C Write Transaction

• Just write the data. No need to change modes in the middle

• Some devices also allow “repeated start” in the middle of write transactions
• But it’s not necessary

54

Peripheral Controls SDA Line

Controller Controls SDA Line

nRF I2C Implementation

• nrf_twi_mngr driver: I2C (Two-Wire Interface) manager
• Expects transactions to occur and is set up to run those

• Takes in an array of “transfer” operations as an argument

• Each operation is either a read or a write
• Includes a device address, includes a pointer to data and length

• Includes flags like NRF_TWI_MNGR_NO_STOP which does not execute a
stop bit (and instead does a repeated start for the next operation)

• Your job is to set up the array of transfer operations
• Then the driver will make it happen

55

Register/data pattern in SPI

• SPI is easier to implement transactions for
• No indication of reading/writing by default

• You can just hold Chip Select low and stop clocking if you want to pause

• Need some way to indicate to the peripheral whether you’re
reading or writing though
• Possibly different register addresses for read versus write

• Possibly 7-bit addresses, with a bit leftover for read/write specification

56

SPI Read Transaction

• Chip select goes low to select the device

• First byte is the register address and read/write selection

• Next bytes are the data to write

57

SDO

SDI

SPI Write Transaction

• Chip select goes low to select the device

• First byte is the register address and read/write selection

• Next bytes are the data to write

58

SDO

nRF SPI Implementation

• nrfx_spim driver: nRF SPI Master (Controller)

• Expects data in “XFER” (transfer) operations
• Can either be read, write, or read AND write (both simultaneously)

• Flags control whether CS pin goes high afterwards or if it stays low
• Or you could just manually control the CS pin

59

60

• SPI

• I2C

• Using SPI and I2C

Outline

	Default Section
	Slide 1: Lecture 12 Wired Communication: SPI and I2C

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	SPI
	Slide 4: Outline
	Slide 5: UART Pros and Cons
	Slide 6: Synchronous UART
	Slide 7: Synchronous serial communication with a single device
	Slide 8: Want bi-directional communication, so three wires
	Slide 9: Wire signals to all devices to form a bus
	Slide 10: Communicating on a bus
	Slide 11: Separate chip select line for each device
	Slide 12: Serial Peripheral Interface (SPI)
	Slide 13: A note on outdated notation
	Slide 14: SPI naming schemes
	Slide 15: SPI wiring
	Slide 16: SPI timing diagram
	Slide 17: SPI communication
	Slide 18: SPI configurations
	Slide 19
	Slide 20: SPI data rate
	Slide 21: Daisy-chaining SPI
	Slide 22: How do we determine when peripheral has information?
	Slide 23: Use Cases
	Slide 24: SPI Pros and Cons
	Slide 25: Break + relevant xkcd

	I2C
	Slide 26: Outline
	Slide 27: Choosing different tradeoffs from other wired communication
	Slide 28: Bus contention could short a shared bus
	Slide 29: Disconnected I/O pins enable shared communication
	Slide 30: Inter-Integrated Circuit (I2C)
	Slide 31: I2C overview
	Slide 32: Open drain bus communication
	Slide 33: I2C transactions
	Slide 34: I2C transactions
	Slide 35: I2C transactions
	Slide 36: I2C transactions
	Slide 37: Bus arbitration
	Slide 38: Bus arbitration
	Slide 39: Repeated start conditions
	Slide 40: Clock stretching
	Slide 41: Real-world I2C transactions
	Slide 42: Each I2C device on a bus must have a different address
	Slide 43: Sparkfun Qwiic connect system
	Slide 44: System Management Bus (SMBus)
	Slide 45: I2C use cases
	Slide 46: I2C Pros and Cons
	Slide 47: Break + Open Question
	Slide 48: Break + Open Question

	Using SPI and I2C
	Slide 49: Outline
	Slide 50: Common sensor interaction pattern
	Slide 51: Example: Microbit accelerometer
	Slide 52: Register/data pattern in I2C
	Slide 53: I2C Read Transaction
	Slide 54: I2C Write Transaction
	Slide 55: nRF I2C Implementation
	Slide 56: Register/data pattern in SPI
	Slide 57: SPI Read Transaction
	Slide 58: SPI Write Transaction
	Slide 59: nRF SPI Implementation

	Wrapup
	Slide 60: Outline

