Lecture 07
Driver Design

CE346 — Microprocessor System Design
Branden Ghena — Fall 2023

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administriva

* Postlab 1 questions due today. Don't forget!

» Project Proposals due Thursday!

« My goal is get you feedback by early next week

« If you still need a partner, let me know TODAY after class.

 Otherwise, class keeps going as usual
« Still have four more lab sessions
» Still have three more quizzes
« Lots more content to cover

Today’s Goals

« Deep-dive into driver design options

 Explore another aspect of device driver design
« Non-blocking vs Blocking interfaces

* Discuss how interrupts interact with these
« Event-loop as a partial alternative

» Consider how an LED matrix driver could be constructed

Outline

- Driver Interfaces (Blocking and Non-Blocking)

« Event-driven Model

 Continuous Operation

How should we write driver software?

e There are various knobs available to us from hardware
* Polling, Interrupts, DMA

* There are also various software interface design
 Synchronous
« Asynchronous
« Callback
« Event-driven model

Synchronous device drivers

« Synchronous functions
 Function call issues a command
« Does not return until action is complete and result is ready

« Example: most functions we're used to
« sqrt () for example
 printf () also usually works this way (with some exceptions)

 Arduino interfaces are usually like this!
 Easy to get started with and understand

Downside of synchronous code: the waiting

« How long will it take until the function returns?
« Immediately, seconds, minutes?

« What if there’s an error and the device never responds?
« More advanced interface could include a timeout option

» Synchronous designs require other synchronous designs
« We can build synchronous interfaces from asynchronous ones
« But we can’t go the other way

Asynchronous drivers

 Goal: let the hardware run on its own and have the code get back
to it later

 Challenge: programmers don’t think that way

 Other challenge: how do we “get back to it later”?
» Callbacks

e Event-driven model

Callbacks

« Callbacks reuse a similar idea to interrupts
« When the event occurs, call this function

» General pattern
« Call driver function with one argument being a function pointer
 Driver sets up interaction and returns immediately
« Later the event happens and the driver calls the function pointer

Function pointers in C

« Harder than in Javascript or C++. Can't define anonymous function inline
 Instead create a pointer to an existing function in your code

vold myfun (int a) {

// do something here
& is actually unnecessary.

With or without are identical.

vold main () {
volid (*fun ptr) (int) = &myfun;

fun ptr(10); // dereference happens automatically

10

Callback functions

*uint32 t timer start(
uint32 t microseconds,
void (*callback fn) (void¥*),
void* context

) ;

* timer start(duration, my timer handler, context);

« “Context” is often provided as well (void*)
« Ability for caller to pass an argument for the callback function
« Often a pointer to a position in a structure or a shared variable to modify

11

Callbacks usually run in an interrupt mode

« If the interrupt handler calls the callback, the callback will be
within that same interrupt mode

 Be careful which variables you modify!!
 Could lead to concurrency issues if you modify a public structure

» Starts to get pretty annoying
« Embedded systems deal with concurrency issues just like OS

12

Building synchronous code out of callbacks

» Callback handlers can be used to build synchronous code

vold myfun (void* context) {

* (boolean*)context = true; // context is the flag pointer

void timer start blocking(duration) {
volatile boolean flag = false;
timer start (duration, &myfun, &flag);

while (!flag) { // spin-loop }

13

Live Coding: Temp driver example

nu-microbit-base/software/apps/temp_driver/

« Some necessary functions
« NVIC_EnableIRQ(irq); // TEMP_IRQn is for the Temperature Sensor
« NVIC_SetPriority(irqg, priority)

14

https://github.com/nu-ce346/nu-microbit-base/blob/main/software/apps/temp_driver

Outline

* Driver Interfaces (Blocking and Non-Blocking)

 Event-driven Model

 Continuous Operation

Interrupts are frustrating

« We do not always want to block on every call
« We also do not want to deal with concurrency issues

 An alternative: one main event loop
* Polls necessary sensors
» Iterates through state machine and determine actions
« Runs at a certain frequency

16

Event loop

 Rather than polling a single driver, poll all of them
« Each time through the loop check all relevant inputs
« Respond to events that are necessary
« Sleep until ready to start again

while (1) {
time start = get time();
boolean result = check timer();
if (result) { check gps(); }
adjust throttle();
delay ms (1000 - (get time() - start));

17

Downsides of event loop design

 Timeliness can be a problem

« How long between the timer being ready and the GPS being
checked in this example?
« Maximum of 1 second plus the time spent checking other stuff

while (1) {
time start = get time();
boolean result = check timer();
if (result) { check gps(); }
adjust throttle();
delay ms (1000 - (get time() - start));

18

Top-half / Bottom-half handler design
 Top half

* Interrupt handler
« Immediately continues next transaction
 Or signals for top half to continue (often with shared variable)

 Bottom half
 Performs logic to actually process and respond to the event
« Run in a non-interrupt context when the scheduler is ready for it
 Usually safe to run it even while interrupts could be occurring

19

Live Codeing: Temperature event-loop example

nu-microbit-base/software/apps/temp event loop/

« Some necessary functions
« NVIC_EnableIRQ(irq); // TEMP_IRQn is for the Temperature Sensor
« NVIC_SetPriority(irqg, priority)

20

https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/temp_event_loop

Outline

* Driver Interfaces (Blocking and Non-Blocking)

« Event-driven Model

- Continuous Operation

Continuous operation

 For some sensors/actuators they might be continuously updating
in the background

» For those, we only need one init and start () function and a
read or write function
« Continuous sensors are always ready with the most recent sample

 Continuous actuators will always update to the new command as soon as
possible

« They might skip a command if you give it multiple very quickly

22

Continuously updating temperature

» Temperature driver design
1. In the interrupt handler, copy over the value
2. Start the next event, which will automatically re-trigger the interrupt

« No more is_ready() function, data is always ready with the most up-to-
date value

» Might be a little behind real-time, but only by one sample

 This particular implementation would mean a TON of interrupts
 Probably want to combine with a timer to run it more slowly

23

LED Matrix design

* This is a good example of a continuous operation actuator

 General driver design

* Split operation between a Model and a View
(Model-View-Controller design)

* Model contains what you want the state of the LEDs to be
« Only updates when the user calls a function
« Updates immediately (non-blocking)

 View contains the code to take the model and display it on the LEDs
 Continuously updates the LED states with a timer

24

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

LEDs on the Microbit

» Use two GPIO pins to control each
LED

« Row high as VDD
e Column low as Ground

« Remember, connections only exist
where there are dots

oL
K
1R
< ROWI
_ i
=W

L3

COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3
& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

[CcoLs
[coL4
[coL3
[coL2
COLI
R45 R46 R11 R48
105R 105R 105R 105R
{ROWI o o o o
D2 P D4 P D6 P D8 » DI0 .
{ROW2 o o o o
2]] o
D12 P D14 ? DI6 P DIg P D20 .
<{ROW3 o o o o
D22 P D24 P D26 P D2g » D30 .
{ROW4 o o o ©
Wl el
D32 P D34 D36 P D3¢ » D40 .
{ROW5 o © © ©
AR AR
ROW1-5 are usually D42 b D44) D46 b D4g) D50]
outputs that source _ ~ - - -
current for LEDs. = = mﬁ [mﬁ
They are also used o o o o o
asdigital inputs = = = = =

when light sensing.

25

Controlling the LED matrix

« We can light up all the LEDs at
once.
» Set all rows to High
e Clear all columns to Low

COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3
& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

LOW
LOW
LOW
LOW
LOW

HIGH

HIGH

HIGH

HIGH

HIGH

ROW1-5 are usually
outputs that source
current for LEDs.
They are also used
asdigital inputs
when light sensing.

3

R45
105R

R46
105R

A

R11
105R

AAAY

R48
105R

AAAY

p g p
E‘LL

=
3

] =}] OUG]
F!s} Els}

Vv

&

=}

28

g 3
’3’3’

3

VY

=)
1

g)
’3’3’

4

COLR1

g y Y y 2 y S 3
COLR2 ; W : Vv | W } v

’9’

o

COLR3

EIQ

o

COLR4

3 ¥ = =
COLR5 | i" _| LL | E

R49
105R

26

u n
COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3

& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

LOW
LOW

» But now how do we turn off o
the right middle LED? LOW

LOW

R48
105R

R49
105R

R11
105R

AAAY
A
AAAY
AAAY

R45 R46
105R 105R

HIGH

p E p
E ' Vv

p g p
E‘LL
=
3

HIGH

%
v

=
=]
2

I

[,
’,,s.
\
] =}] OUG]
F!s} Els}
v

HIGH

I
oo

2
EILL

2]
E .3)'

HIGH

=)
1

HIGH

ROW1-5 are usually
outputs that source
current for LEDs.
They are also used
asdigital inputs
when light sensing.

o

)
B
=
)
B
o0

o | o .
E'»’* E.»’*

O] =)] E] =)]
COLR2 ; W _: Vv | W } v
\v
3)’

3 ¥ =
COLR5 | i" -| &3' | E

COLR1
COLR3
COLR4

27

Can we control by row?

* But now how do we turn off
the right middle LED?

« What if we clear the row to
Low?
« Messes up the entire row

COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3
& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

LOW
LOW
LOW
LOW
LOW

HIGH

HIGH

LOW

HIGH

HIGH

ROW1-5 are usually
outputs that source
current for LEDs.
They are also used
asdigital inputs
when light sensing.

3

R45
105R

R46
105R

A

R11
105R

AAAY

R48
105R

AAAY

p g p
E‘LL

=
3

y © y g]
F!s} Els}

Vv

ot

=}

28

= p
’3’3’

3

VY

=)
1

g)
’3’3’

4

COLR1

) y O 1 E y O]
COLR2 ; W : Vv | W } v

)
B
=

COLR3

o

)
B
o0

COLR4

) w) =,)
Ln £ s (3]
= =, =

COLR5 | E" | LL | E

R49
105R

28

Can we control by column?

* But now how do we turn off
the right middle LED?

 What if we set the column to
High?

« Messes up the entire column

« We don't actually have
arbitrary control over the
whole thing at once

COL1-5 are usually nRF52 outputs that are used to sink current to selectively

& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

asdigital inputs

COLRI1)\)\)\)\)\
s 7
o y o b E} y o] E b %U‘
) ’s. F v ’s. RL ’x
corr2 [¥ [¥ l ¥ l ¥ [¥ ,\H/\é\’

o1 ST] e

B35 5 383

COIR3 [¥ [¥ [[¥ _lv %
o L © L O L © L O =

B 9, =t 3 y =
¥ y v v ¥
COLR4 _| ¥ _: ¥ -| ¥ -: ¥ -| ¥ %
3 2 g g S z%
e o B e I o 3
~ = A

29

Persistence of vision

* The solution here is to abuse how human eyes work

 Eyes can't detect changes in light that are going faster than a
certain speed
 Or if they do at all, it’s interpreted as slightly dimmer light

« Any given LED should be above ~100 Hz to keep humans from noticing
the flicker

30

Persistance of vision on an LED matrix

31

One column at a time

 What if we instead control a
single column at a time?

 First column, all LEDs on

COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3
& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

HIGH

HIGH

HIGH

HIGH
LOW

HIGH

HIGH

HIGH

HIGH

HIGH

ROW1-5 are usually
outputs that source
current for LEDs.
They are also used
asdigital inputs
when light sensing.

R11

105R

A

R48

AAAY

105R

=
..

y © y g]
F!s} Els}

Vv

ot

P D28
Ei’b ;ii» -y y
D37 » D ! D3 D3 |
D42 » D P D46 P D48 |
— ol o =+
- - - -
O O O O
o o o o

) w) =,)
Ln £ s (3]
= =, =

COLR5 | E" | Ll' | E

R49

105R

32

One column at a time

 What if we instead control a
single column at a time?

« Same for second column
through fourth column

COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3
& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

HIGH
HIGH
HIGH
LOW
HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

ROW1-5 are usually
outputs that source
current for LEDs.
They are also used
asdigital inputs
when light sensing.

3

R11
105R

A

R48
105R

AAAY

p E p
E:ﬁ'

=
..

o
;3}

1

y © y g]
F!ﬁ' Els}'

Vv

g .
E :Ll'

ot

=}

28

g 3
E':le

3

VY

=)
1

g)
E:Ll'

4

COLR1

.

o

48

COLR4

) w) =,)
Ln £ s (3]
= =, =

COLR5 | E" | Ll' | E

33

One column at a time

 What if we instead control a
single column at a time?

« Same for second column
through fourth column

COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3
& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

HIGH
HIGH
LOW
HIGH
HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

ROW1-5 are usually
outputs that source
current for LEDs.
They are also used
asdigital inputs
when light sensing.

3

R11
105R

A

R48
105R

AAAY

p E p
E:ﬁ'

=
..

o
;3}

1

y © y g]
F!s} Els}

Vv

9 .
E :Ll'

ot

=}

28

g 3
E':le

3

VY

=)
1

g)
E:Ll'

4

COLR1

.

o

48

COLR4

) w) =,)
Ln £ s (3]
= =, =

COLR5 | E" | Ll' | E

34

One column at a time

 What if we instead control a
single column at a time?

« Same for second column
through fourth column

COL1-5 are usually nRF52 outputs that are used to sink current to selectively
illuminate LEDs. Note that for light sensing the LEDs must be reverse-biased. COL1, 3
& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

HIGH
LOW

HIGH
HIGH
HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

ROW1-5 are usually
outputs that source
current for LEDs.
They are also used
asdigital inputs
when light sensing.

3

R11
105R

A

R48
105R

AAAY

p E p
E:ﬁ'

=
..

o
;3}

1

y © y g]
F!s} Els}

Vv

9 .
E :Ll'

&

=}

28

g 3
E':le

3

VY

=)
1

g)
E:Ll'

4

COLR1

o]

o

48

COLR4

) w) =,)
Ln £ s (3]
= =, =

COLR5 | E" | Ll' | E

35

One column at a time

 What if we instead control a
single column at a time?

e Last column we only turn on
some of the LEDs

 As long as we keep cycling
through columns fast enough,
the whole thing becomes a
display

COL1-5 are usually nRF52 outputs that are used to sink current to selectively

& 5are connectoed to nRF52 ADC-capable pins but light sensing is currently digital.

aaaaaaaaaaaaaaaa

asdigital inputs

o , O) O , O) 7 L 25
R §;L %;L é;l’ E;L F;L
corr2 [¥ [¥ l ¥ l ¥ [¥ ,\H/\Q’

orl Sor] Bl el |

eIk elkecimel

COIR3 [¥ [¥ l [¥ [¥ %
o L © L O L © L O & =

B) =t 3 y =
¥ y ¥ v ¥
COLR4 _| ¥ _: ¥ -| ¥ -i ¥ -| ¥ %
3 2 g g S z%
e I o e 3 O S
- 2 A

36

LED matrix full design

« Requires GPIO pins and a Timer

« When the Timer fires
» Change which column you are displaying
» Update the row pins based on this new column

« Read row data from a 5x5 array that models what the screen should
show

» When the user wants to change the display

« Update that 5x5 array in memory
o It'll start getting drawn on the screen the nexttime the Timer fires

37

Outline

* Driver Interfaces (Blocking and Non-Blocking)

« Event-driven Model

 Continuous Operation

Outline
« Embedded Software

 Embedded Toolchain

e Lab Software Environment

e Interrupts

 Boot Process

How does a microcontroller start running code?

* Power comes on
 Microcontroller needs to start executing assembly code

* You expect your main() function to run
« But a few things need to happen first

40

Step 0: set a stack pointer

« Assembly code might need to write data to the stack
 Might call functions that need to stack registers

« ARM: Valid address for the stack pointer is at address 0 in Flash
» Needs to point to somewhere in RAM

« Hardware loads it into the Stack Pointer when it powers on

41

Step 1: set the program counter (PC)

* a.k.a. the Instruction Pointer (IP) in x86 land

« 32-bit ARM: valid instruction pointer is at address 4 in Flash
 Could point to RAM, usually to Flash though
 In interrupt terms: this is the "Reset Handler”!

« Automatically loaded into the PC after the SP is loaded
 Again, hardware does this

42

Step 2: “reset handler” prepares memory

» Code that handles system resets
« Either reset button or power-on reset
« Address was loaded into PC in Step 1

« Reset handler code:
« Loads initial values of .data section from Flash into RAM
« Loads zeros as values of .bss section in RAM
 Calls SystemlInit
« Starts correct clocks for the system
« Handles various hardware configurations/errata
« Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/gcc startup nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/system nrf52.c

43

https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S
https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

Step 3: set up C runtime

« _start is provided by newlib
« An implementation of libc — the C standard library
o Startup is a file usually named crt0

« Does more setup, almost none of which is relevant for our system
 Probably is this code that actually zeros out .bss
« Sets argcand argvto 0
» Calls main() !

https://sourceware.org/git/qitweb.cqi?p=newlib-cygwin.qgit;a=blob plain;f=libgloss/arm/crt0.S;:hb=HEAD

44

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

Online writeup with way more details and a diagram

 Relevant guide!!

« https://embeddedar
tistry.com/blog/2019

/04/17/exploring-
startup-
implementations-
newlib-arm/

« Covers the nRF52!

v!-

Key

Reset_Hamdler Syaterminit
x|y N
> mermset
4:
hardware_init_hook
>
bart 5
foware_ini k
. 50 _init_hoo
B: 7
> atexit > __register_exitproc
10: |y 8: 9:
—libe_init_array _imit
»> : >
Frain
11: * 12
__call_exitprocs
_'p
exit
13: 14:
_exit _kill_shared
»> »>

nRF52

Mewlib

Application

45

https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/

	Default Section
	Slide 1: Lecture 07 Driver Design

	Goals
	Slide 2: Administriva
	Slide 3: Today’s Goals

	Driver Interfaces
	Slide 4: Outline
	Slide 5: How should we write driver software?
	Slide 6: Synchronous device drivers
	Slide 7: Downside of synchronous code: the waiting
	Slide 8: Asynchronous drivers
	Slide 9: Callbacks
	Slide 10: Function pointers in C
	Slide 11: Callback functions
	Slide 12: Callbacks usually run in an interrupt mode
	Slide 13: Building synchronous code out of callbacks
	Slide 14: Live Coding: Temp driver example

	Event-Loop
	Slide 15: Outline
	Slide 16: Interrupts are frustrating
	Slide 17: Event loop
	Slide 18: Downsides of event loop design
	Slide 19: Top-half / Bottom-half handler design
	Slide 20: Live Codeing: Temperature event-loop example

	LED Matrix
	Slide 21: Outline
	Slide 22: Continuous operation
	Slide 23: Continuously updating temperature
	Slide 24: LED Matrix design
	Slide 25: LEDs on the Microbit
	Slide 26: Controlling the LED matrix
	Slide 27: Controlling the LED matrix
	Slide 28: Can we control by row?
	Slide 29: Can we control by column?
	Slide 30: Persistence of vision
	Slide 31: Persistance of vision on an LED matrix
	Slide 32: One column at a time
	Slide 33: One column at a time
	Slide 34: One column at a time
	Slide 35: One column at a time
	Slide 36: One column at a time
	Slide 37: LED matrix full design

	Wrapup
	Slide 38: Outline

	Boot process
	Slide 39: Outline
	Slide 40: How does a microcontroller start running code?
	Slide 41: Step 0: set a stack pointer
	Slide 42: Step 1: set the program counter (PC)
	Slide 43: Step 2: “reset handler” prepares memory
	Slide 44: Step 3: set up C runtime
	Slide 45: Online writeup with way more details and a diagram

