Lecture 06
Timers

CE346 — Microprocessor System Design
Branden Ghena — Fall 2023

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia

« Last chance for Labl checkoffs 7:00-8:30 today
 Looks like ~4 groups to go, so it shouldn’t be too bad

* Don't forget to answer the postlab questions on Gradescope

 You and your partner can work on them together, but submit separately
 Due by Tuesday this week only

e Lab2 tomorrow! Virtual Timer Lab

* Project proposals due next week Thursday!
 Be sure to find a group. Fill out the survey if you want to find someone!

Today’s Goals

e Understand the role of clocks in a microcontroller

 Explore functionality of various timer peripherals on the Microbit

Outline
* Clocks

e Timers

» Virtualizing Resources

e Real-Time Counter

 Watchdog

What are clocks?

* Clock signals, in the microcontroller context, are oscillating square
wave signals used to switch transistors and latch inputs

One Clock
“Period”

1 D — |
o] B

TIME i

* A clock MUST be running for (almost) anything on a
microcontroller to function (processor and peripherals)
« Exceptions:

« Low-power input interrupts
» GPIOTE port interrupt, Analog LPCOMP interrupt, NFC sense interrupt, USB power interrupt

 Reset signal

Generating clocks

 External crystal oscillator
 Creates clock signal
« Chunk of quartz

« Behaves like RLC circuit but
uses less energy

e Internal mechanisms
* RC oscillator
 Creates clock signal

* Less accurate and higher
energy than crystal

» Phase-Locked Loop (PLL)

. Multiﬁly input to create
new higher frequency
clocks

X'tal

Electrode ———=—

(Fig.7) (a) Metal can type resonator
(b) Ceramic SMD type resonator

22¥9!

l '

Blank

i
I Can
W
&
o 2
fa
Blank Metal™ (® - g
/ Lid q"f'?s =
B Co ated
f' Quartz— = Electrode

Ceramic
Base

(c) Symbol of crystal unit (c)

C; 30pF

- ™)
0 I

1-20MHz |

X =

0SC1 %R
CPU = ’ Al

Microprocessor

05C2

C: 30pF

Symbol of a Crystal l

Equivalent circuit of a crystal

6

Microbit crystal for nRF52833

Clocks and energy

 Fundamental tradeoff

 Faster clock gets things done faster but uses more energy
* Slower clock uses less energy but gets things done slower

« Which to use depends on the situation

« CPU bound: faster clock, IO bound: slower clock

@ >Static 48MHz: 4.29 m)
Static 4MHz: 4.13 m)

=%
1

L
1

Dynamic: 2.90 m)

Energy Consumed (m))
= P

-

=

100 200 300 400 500 600
Time (ms)

Example of clock selection for a
mixed load (part IO, part CPU)

Energy consumed becomes a
horizontal line when the task is
completed

Chiang et al. “Power Clocks: Dynamic Multi-Clock Management for Embedded Systems” EWSN 2021

https://www.amitlevy.com/papers/2021-ewsn-chiang.pdf

Controlling clocks

« Some microcontrollers provide extremely fine-grained control over
clocks
 Really complicated section of code to get working
« Many combinations are invalid
« Manually enable/disable clocks as needed

* NRF52 instead gives almost no control but is easier to use
* One 64-MHz clock for processor
 Multiple peripheral clocks, but (most) peripherals are hardwired to one
« 16 MHz for almost all peripherals (PDM and I2S are 32 MHz)
« Low-frequency 32 kHz clock for low-power peripherals
 Automatically enables/disables clocks

NRF52833 clocks

HFCLKSTART HFCLKSTOP

CLOCK $

LFCLKSTART LFCLKSTOP

'y

HFINT

Internal oscillator

HFXO

Crystal oscillator

XC1
[]
::I::
32MHz [
L
L
XC2
XL1
[
32.768 kHz

1

1+

XL2 |

Optional: for lower energy

LFXO

HFCLK
Clock control

P PCLKI1M

P PCLK16M

— P PCLK32M

LFRC
CAL RC oscillator SYNT

Crystal oscillator

LFCLK
Clock control

P HCLKB4M

and higher accuracy

'

HFCLKSTARTED

¢

LFCLKSTARTED

P PCLK32KI

10

Electrical characteristics

* Active power of clocks

« 32 kHz crystal run current: 0.23 YA
« 32 kHz RC oscillator run current: 0.70 pA
« 32 MHz crystal average run current: 300-700.00 pA
« 32 MHz standby current: 110.00 pA

« Startup time for external crystals
« 32 kHz crystal: 250-500 ms (milliseconds!!!)
« 32 MHz crystal: 60-200 pus
« Beware: switching can lead to delays and instability
* NRF52 uses RC oscillator while crystal is not yet ready

11

Outline
 Clocks

e Timers

» Virtualizing Resources

e Real-Time Counter

 Watchdog

Timer peripherals

« Common need for embedded systems: sense of time
« Start this behavior after a certain amount of time
« Stop this behavior after a certain amount of time
« Measure how much time passed between two events

 Timer peripherals
 Input is one of the system clocks
» Counts up a register at each clock tick
 Looking at register at start and end can give real-world duration
« Compare to saved value and trigger interrupt on match
* Allows interrupts to be scheduled in the future

13

Discussion

« What is the finest granularity you might need from a timer?
 Give an example of the use case

« What is the longest duration you might need from a timer?
 Give an example of the use case

14

Discussion

« What is the finest granularity you might need from a timer?
 Give an example of the use case

« What is the longest duration you might need from a timer?
 Give an example of the use case

« Concern: high granularity for long durations require MANY bits
« We often optimize for one of the other

15

Timer peripheral on nRF52833

PCLE1M

PCLE16M

)
B
T
_|
' g % O
0 5 4 B &
T = (= ;i
5 94 @ 5 T
TIMER * ‘ |
TIMER. Core
(M|
E’H Increment BITMODE
1
L - Counter ;
Prescaler e
1
— - friner : g
! cC[D..n]
PRESCALER | | MO

-

5
=

(U a3 Hed WD

16

Input and Prescaler
16 MHz

fTIMER = ZPRESCALER

 Prescaler is a 4-bit number
» Possible timer input clocks: 16 MHz — 488 Hz

» Ticks counted with (up to) 32-bit internal Counter:
e Minimum
« 268 seconds until overflow
« 62.5 ns per tick
« Maximum
« 101 days until overflow
« 2.04 ms per tick

17

Alternate input source for counter mode

e Counter mode works
with non-timer inputs

« E.g. GPIO input event

 Count anything!

PCLETM

PCLE16M

3
T
T
_|
L % |
5 4 fi &
T = (= *
4 ™ 5)
TIMER
TIMER. Core
nnnnnnnn BITMODE
- Counter
Prescaler A
C[D..n]
PRESCALER | | MO

[o HvdOD -

18

Capture/Compare registers (CC)

» 32-bit storage registers (each timer has multiple)
 Uses: capturing or comparing

* On Capture[n] event
 Internal Counter value copied to CC[n]
« Then you can read the former Counter value from CC[n]

 Capture used to measure durations of events
 Capture can be triggered by software or by Events from other peripherals
 Multiple registers to measure multi-part events

19

Comparing with CC registers

« When internal Counter value equals a CC register
 Corresponding Compare[n] event is triggered
« Can trigger interrupts

 Usually written to in advance to start/stop behavior
» Toggle LED every second
« Sample sensor every five minutes
« Refresh LED matrix every 1/60 seconds

20

The nRF52833 has multiple Timer instances

6.28.5 Registers

Base address Peripheral Instance Description Configuration

0x40008000 TIMER TIMERO Timer 0 This timer instance has 4 CC registers
(CCl[o..3])

0x40009000 TIMER TIMER1 Timer 1 This timer instance has 4 CC registers
(CC[o..3])

0x4000A000 TIMER TIMER2 Timer 2 This timer instance has 4 CC registers
(CC[o..3))

O0x4001A000 TIMER TIMER3 Timer 3 This timer instance has 6 CC registers
(CCl[o..5])

0x4001B000 TIMER TIMER4 Timer 4 This timer instance has 6 CC registers

(cclo..5])

Bonus concept: shorts

 In a peripheral: Tasks are inputs and Events are outputs

 Shorts connect an Event to a Task within a peripheral
 Tasks and Events idea is fairly nRF specific

dLS

* Timer shorts
» Connect Compare[n] to Clear =" "7 s
« Connect Compare[n] to Stop

Yy

22

Usage: how do we set a one second timer?

« Assume timer is already running

1. Get current time from timer

2. Add 1 second worth of ticks to it

. 1283059222 is the number of ticks per second

3. Set an unused Compare register to value

4. Enable interrupts for that Compare event

Warning: what if
you're setting a 1 us
timer instead? Or a
100 ns timer?

Timer could expire
before software writes
it to the peripheral.

23

Check your understanding

. Prescaler value is 4 16 MHz

fTIMER = SPRESCALER

e Current internal Counter value is 0x1000
« Want a 0.5 second timer

 What do you set the CC[0] register to? (32-bits)

24

Check your understanding

. Prescaler value is 4 16 MHz

fTIMER = SPRESCALER

e Current internal Counter value is 0x1000
« Want a 0.5 second timer

 What do you set the CC[0] register to? (32-bits)
« 1 MHz Timer frequency -> 500,000 ticks in 0.5 seconds
« 500000 -> 0x7A120

 Plus initial value of counter = 0x7B120

25

Outline
 Clocks

* Timers
- Virtualizing Resources

e Real-Time Counter

 Watchdog

Choosing resource amounts is a problem

* Problem: applications may require any number of resources
» Particularly in this case: peripherals
« For example, how many timers should there be?

 But hardware has to pick some number to provide
« More is wasted cost
 Too few and applications cannot succeed

» Solution: virtualize the resource

27

Virtualization pattern

 Create a queue of requests and a pool of resources
* N requests to M resources

» Application requests are queued when they come in
 Rather than serviced immediately

« When a resource is available
« Pop request from queue (by some priority)
« Service with hardware
« Then wait until another resource is available

28

Example: sending serial messages

« Serial messages (such as printf() strings) are sent via UART
« UARTE peripheral (we’ll talk about this later)

* NRF52 has two UARTE peripherals

 Can be attached to any output pins
« Changing pins is a quick operation

 What if we want to talk to three serial devices?
« Console (printf output)
« GPS (NMEA)
« WiFi radio (AT commands)

29

Virtualized UART

Microcontroller

Application

Virtual UART

UARTEQ UARTE1

>erial GPS WiFi Radio
Console

Empty

30

Virtualized UART: serves request with hardware

Microcontroller

Application

Virtual UART

UARTEQ UARTE1

{Serial Console, TX, 0x20001F00, 20}

s GPS WiFi Radio

31

Virtualized UART: serves until resources are full

Microcontroller

Application

Virtual UART

{WiFi Radio, TX, 0x20000020, 1500}

UARTEQ UARTE1

{GPS, RX, 0x20001000, 150}

{Serial Console, TX, 0x20001F00, 20}

=i g WiFi Radio
0 Olls

32

Virtualized UART: additional requests are queued

Microcontroller

Application

Virtual UART
{Serial Console, TX, 0x20001E00, 10}

{Serial Console, TX, 0x20000500, 20}

{WiFi Radio, TX, 0x20000020, 1500}

UARTEQ UARTE1

{GPS, RX, 0x20001000, 150}

{Serial Console, TX, 0x20001F00, 20}

=i g WiFi Radio
0 Olls

33

Virtualized UART: moves to next item when complete

Microcontroller

Application

Virtual UART
{Serial Console, TX, 0x20001E00, 10}

{Serial Console, TX, 0x20000500, 20}
{WiFi Radio, TX, 0x20000020, 1500}

UARTEQ UARTE1

{GPS, RX, 0x20001000, 150}

Serial X -
e01(0
Console

Virtualized UART: moves to next item when complete

Microcontroller

Application

Virtual UART
{Serial Console, TX, 0x20001E00, 10}

{Serial Console, TX, 0x20000500, 20}

{WiFi Radio, TX, 0x20000020, 1500}

UARTEQ UARTE1

4 4 14

GPS Radio

35

Challenges to making virtualization work

« How fast are requests coming in?
« Requests more quickly than service are an unsatisfiable system

« How long does it take to reconfigure the resource?
 Long delays could mean high latency
« Might want to optimize for requests with same configuration first

* Need to ensure all of the configuration changes

« Common bug: forget to modify part of one register and system works most of
the time, but not in all cases

* Need ability to queue requests
 Usually stored in a linked list structure
« Dynamically... But we generally want to avoid dynamic memory

36

Dynamic resource allocation options

1. Create a queue with a maximum size in Virtual Driver
« Some number larger than the hardware picked, based on app knowledge
« Still either runs out or wastes memory

2. Just use malloc()
» Is actually possible on the nRF52 with newlib (libc implementation)
« Might run out, but then just wait for requests to complete

3. Create list nodes individually as global variables
 Application decides how many it needs at compile time
 Passes them into the Virtual Driver at first use

« “"Here's my request and a linked list node to store it in”

37

Another example: managing multiple timers

* You often have tasks that look like this:

SN O U

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

» Most easily thought about as three separate timers
« But maybe the system doesn’t have that many timers to spare!
» Virtualization can help

38

Virtual timers

« Solution: keep a list of timer expiration times
» Soonest expiration goes in the Capture/Compare register
 Others stay in linked list, sorted by expiration

Timer Requests CC Register: 10010
1. 10010, A
2. 10050, B
3. 10110, C
4. 20000, D

10010 10050 10110 20000

R S S

time
39

Virtual timers

« Solution: keep a list of timer expiration times
» Soonest expiration goes in the Capture/Compare register
 Others stay in linked list, sorted by expiration

Timer Requests CC Register: 10010
1. 10010, A
2. 10050, B _
3. 10110, C Call timer hanc_IIer Al |
4, 20000, D Update CC register and list
10010 10050 10110 20000

_Y_l_l—l_>

time
40

Virtual timers

« Solution: keep a list of timer expiration times

» Soonest expiration goes in the Capture/Compare register
 Others stay in linked list, sorted by expiration

Timer Requests CC Register: 10050
1. 10050, B
2. 10110, C
3. 20000, D
10010 10050 10110 20000

2 S W

time

41

Virtual timers

« Solution: keep a list of timer expiration times

» Soonest expiration goes in the Capture/Compare register
 Others stay in linked list, sorted by expiration

Timer Requests CC Register: 10050
1. 10050, B _
2. 10110, C Call timer handler B!
3. 20000. D Update CC register and list
10010 10050 10110 20000

—

time

42

Virtual timers

« Solution: keep a list of timer expiration times
» Soonest expiration goes in the Capture/Compare register
 Others stay in linked list, sorted by expiration

Timer Requests CC Register: 10110
1. 10110, C
2. 20000, D
10010 10050 10110 20000

B S S

time

43

Virtual timers

« Solution: keep a list of timer expiration times

» Soonest expiration goes in the Capture/Compare register
 Others stay in linked list, sorted by expiration

Timer Requests CC Register: 10100

1. 10100, E _

2. 10110, C New request arrives for 10100
3. 20000, D Enqueue and sort queue

Update CC if first request has changed

10010 10050 10110 20000

B S

time

Enqueuing timer requests

 Timer requests come in the form: {N seconds from now}
* timer_request(duration, handler);

» Requests are always relative to the current time

» Need to enqueue by expiration time
 Duration + Current Time
* Allows for a globally sortable list
» Need to decide how to handle overflow logic in real world

45

Make sure not to miss timers

« Sorting list and modifying the CC register takes time
« Might have skipped right past the soonest event
« Check for this, and call handler manually if necessary

Timer Requests CC Register: 10100
1. 10100, E
2. 10110, C Handle 10100 event, Call E
3. 20000, D
10010 10050 10110 20000

B S S

time

46

Make sure not to miss timers

« Sorting list and modifying the CC register takes time
« Might have skipped right past the soonest event

Timer Requests CC Register: 10110
1. 10110, C |
2. 20000, D Update list

Update CC register
Oh no! That’s in the past!!

10010 10050 10110 20000

B S

time

47

Break + Question

« Sorting list and modifying the CC register takes time
« Might have skipped right past the soonest event

« What do we do about the missed timer?
« There are multiple “correct” answers here

48

Break + Question

« Sorting list and modifying the CC register takes time
« Might have skipped right past the soonest event

« What do we do about the missed timer?
« There are multiple “correct” answers here

- Some options:
» Just call handle that timer event as soon as possible
 Possibly telling it about the delay

 Crash the system! (Deadlines cannot be missed in some systems)
« Or at least enter some fault recovery handler

49

Make sure not to miss timers

« Sorting list and modifying the CC register takes time
« Might have skipped right past the soonest event
« Check for this, and call handler manually if necessary

Timer Requests CC Register: 20000

1. 20000, D
Call C manually

Update list and CC register again

10010 10050 10110 20000

B S

time

50

Some timers are periodic

« Repeating timers are easy to add to this system
 Include a Boolean for “repeating” and the duration in the request

» When timer expires
« If not repeating, just call handler and then drop it
« If repeating,
« First reinsert based on duration and new current time

« Then call the handler
« Don’t want the latency of the handler to slow us down

51

Concurrency safety

» Modifying the request structure in an interrupt context is
dangerous
« New request might be in the middle of getting added
« Interrupt would run right in the middle of that
» Literally an OS data race example

» Solution: disable interrupts during critical section
« Whenever editing request structure
« Enable interrupts after, which may result in an event

 Note: Interrupt handler might now fire but have no work to do. Should
always check if something should actually be handled first

52

Outline
 Clocks

e Timers

» Virtualizing Resources

 Real-Time Counter

 Watchdog

Real-time Counter

« Low-power (32 kHz) version of Timer
* Only a 24-bit internal Counter

* Note:

T 32.768 kHz
START DTP PRESCALER E— TICK
STOP — I COUNTER
aTC T" OVRFLW
CLEAR O——
task
TRIGOVRFLW EITF CC[0:3] T COMPAREJO._N]

abbreviated RTC, but that already means something else (Real-Time Clock)

54

Differences between Real-Time Counter and Timer

* Runs off of LFCLK instead of HFCLK
« With smaller prescaler value (4096 vs 32768)

» 24-bit counter vs 32-bit counter for Timer

 Can read the Counter value directly
« No need for Capture task

» Otherwise extremely similar. Just a low-power version of Timer

55

Time resolution for Real-Time Counter

32 KHz

Prescaler+1

fTMER =

 Resolution
« Minimum: 30.517 ps ticks, overflows in 512 seconds (24-bit Counter)
« Maximum: 125 ms ticks, overflows in 582 hours

* Not as precise as the Timer (which has 62.5 ns best precision)
 Possible design: use both
 Real-Time Counter for most of the waiting
« Chained into Timer for precise remaining amount of time

56

Comparing timer types

 Real-Time Counter
« Low precision and duration
« Low energy

* Timer
 High precision or duration
 High energy

57

Outline
 Clocks

e Timers

» Virtualizing Resources

e Real-Time Counter

- Watchdog

Reliable systems

« What's the most common way to solve computer problems?
 Turn it off and turn it on again.

- Why?

59

Reliable systems

« What's the most common way to solve computer problems?
 Turn it off and turn it on again.

- Why?

 Resets “state” to original values, which are likely good
« Startup is often well-tested

« It's long-running code interacting in unexpected ways that leaves systems
in a broken state

60

Watchdog timer (WDT)

 Focused on failures where the system “hangs” forever
« Maybe software, maybe hardware!

« Can't know for certain the system is hung, but can know practically

 Select a timeout that is the maximum amount of time you expect the
system to ever go without looping in main()

« Multiply it by 2-10
 Set a watchdog timer to that value

o If watchdog timer ever expires, it resets the system (in hardware)

61

Watchdog configuration

Counter Reload Value + 1

timeout (seconds) = 77

 Configure watchdog
« Can choose whether to count down during Sleep mode or Debug mode

 Set a Counter Reload Value (CRV, 32-bits)

- Start the watchdog timer
 Loads internal Counter to CRV value
« Starts counting down at 32 kHz

62

Running applications with a watchdog timer

* Need to periodically reset the watchdog to keep it from expiring
« Known as “feeding” the watchdog or “kicking” the watchdog

 Reload Request register
« Must write sequence 0x6E524635 to reload watchdog
* Incredibly unlikely to happen by accident

« While running, watchdog is protected from modification
« Configure once, run forever (at least until a reboot)
 Only option is to make periodic Reload Requests

 Default off on the nRF52833 (default on for the MSP430!)

63

Outline
 Clocks

e Timers

» Virtualizing Resources

e Real-Time Counter

 Watchdog

	Default Section
	Slide 1: Lecture 06 Timers

	Goals
	Slide 2: Administrivia
	Slide 3: Today’s Goals

	Clocks
	Slide 4: Outline
	Slide 5: What are clocks?
	Slide 6: Generating clocks
	Slide 7: Microbit crystal for nRF52833
	Slide 8: Clocks and energy
	Slide 9: Controlling clocks
	Slide 10: nRF52833 clocks
	Slide 11: Electrical characteristics

	Timers
	Slide 12: Outline
	Slide 13: Timer peripherals
	Slide 14: Discussion
	Slide 15: Discussion
	Slide 16: Timer peripheral on nRF52833
	Slide 17: Input and Prescaler
	Slide 18: Alternate input source for counter mode
	Slide 19: Capture/Compare registers (CC)
	Slide 20: Comparing with CC registers
	Slide 21: The nRF52833 has multiple Timer instances
	Slide 22: Bonus concept: shorts
	Slide 23: Usage: how do we set a one second timer?
	Slide 24: Check your understanding
	Slide 25: Check your understanding

	Virtualizing Resources
	Slide 26: Outline
	Slide 27: Choosing resource amounts is a problem
	Slide 28: Virtualization pattern
	Slide 29: Example: sending serial messages
	Slide 30: Virtualized UART
	Slide 31: Virtualized UART: serves request with hardware
	Slide 32: Virtualized UART: serves until resources are full
	Slide 33: Virtualized UART: additional requests are queued
	Slide 34: Virtualized UART: moves to next item when complete
	Slide 35: Virtualized UART: moves to next item when complete
	Slide 36: Challenges to making virtualization work
	Slide 37: Dynamic resource allocation options
	Slide 38: Another example: managing multiple timers
	Slide 39: Virtual timers
	Slide 40: Virtual timers
	Slide 41: Virtual timers
	Slide 42: Virtual timers
	Slide 43: Virtual timers
	Slide 44: Virtual timers
	Slide 45: Enqueuing timer requests
	Slide 46: Make sure not to miss timers
	Slide 47: Make sure not to miss timers
	Slide 48: Break + Question
	Slide 49: Break + Question
	Slide 50: Make sure not to miss timers
	Slide 51: Some timers are periodic
	Slide 52: Concurrency safety

	Real-time counter
	Slide 53: Outline
	Slide 54: Real-time Counter
	Slide 55: Differences between Real-Time Counter and Timer
	Slide 56: Time resolution for Real-Time Counter
	Slide 57: Comparing timer types

	Watchdog
	Slide 58: Outline
	Slide 59: Reliable systems
	Slide 60: Reliable systems
	Slide 61: Watchdog timer (WDT)
	Slide 62: Watchdog configuration
	Slide 63: Running applications with a watchdog timer

	Wrapup
	Slide 64: Outline

