
Lecture 04
Input and Output

CE346 – Microprocessor System Design

Branden Ghena – Fall 2023

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)



Administrivia

• Lab on Friday!
• Ford room 3210

• See you all there!!

• Show up on-time. We are going to get started right away

• None of this 5-10 minutes late nonsense

• Remember that you need to attend the section you registered for 
in CAESAR
• If you need to switch for a day, ask Branden for permission in advance on 

Piazza

2



Quiz coming soon

• First quiz is next week Tuesday! (10/03)
• 15-minute quiz, taken in-class on paper

• Last fifteen minutes of class

• Bring a pencil

• No notes, no calculator

• Covers material from the last two weeks, including today

• Goals:
• Don’t be worried about the quiz. It won’t be that tough

• Do review class material and make sure you actually understand it

3



Today’s Goals

• How does a microcontroller interact with peripherals to perform 
input and output operations?

• Explore reliable use of Memory-Mapped I/O

• Learn about our first peripherals: Temperature and GPIO

• Explore General Purpose I/O (GPIO) peripheral use
• Understand how it works

• Understand what kinds of configurations it might have

4



5

• I/O Motivation

• Memory-Mapped I/O

• Controlling digital signals
• GPIO

• GPIOTE

Outline



Devices are the point of computers

• Traditional systems need to 
receive input from users and
output responses
• Keyboard/mouse

• Disk

• Network

• Graphics

• Audio

• Various USB devices

• Embedded systems have the same 
requirement, just more types of IO

6

Processor
 

Computer

Control

Datapath

Memory Devices

Input

Output



Devices are core to useful general-purpose computing

7

Computer

Mouse

Keyboard

Ethernet

Bluetooth

Monitor

Headphones

Ethernet

Bluetooth

Input Output



Devices are essential to cyber-physical systems too

8

Computer

Lidar

Inertial 
Measurement Unit

Camera

CAN

Throttle Control

Brake Control

Wheel Rotation

CAN

Input Output



Device access rates vary by many orders of magnitude

• Rates in bit/sec

• System must be 
able to handle 
each of these
• Sometimes 

needs low 
overhead

• Sometimes 
needs to not 
wait around

9

Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0



10

• I/O Motivation

• Memory-Mapped I/O

• Controlling digital signals
• GPIO

• GPIOTE

Outline



How does a computer talk with peripherals?

• A peripheral is a hardware unit within a microcontroller
• Sort of a “computer-within-the-computer”
• Performs some kind of action given input, generates output

• We interact with a peripheral’s interface
• Called registers (actually are from EE perspective, but you can’t use them)
• Read/Write like they’re data

• How do we read/write them?
• Options:

• Special assembly instructions
• Treat like normal memory

11



Memory-mapped I/O (MMIO): treat devices like normal memory

• Certain physical addresses do not actually go to memory

• Instead they correspond to peripherals
• And any instruction that accesses memory can access them too!

• Every microcontroller I’ve
ever seen uses MMIO

12

control reg.
data reg.

0x00000000

0xFFFFFFFF

0xFFFF0000

Address



Memory map on nRF52833

• Flash 0x00000000

• SRAM 0x20000000

• APB peripherals 0x40000000
• Everything but GPIO

• AHB peripherals 0x50000000
• Just GPIO

• UICR – User Information Config

• FICR – Factory Information Config

13



Example nRF52 peripheral placement

• 0x1000 is plenty of space for each peripheral
• 1024 registers, each 32 bits

• No reason to pack them tighter than that

14



TEMP on nRF52833 example

• Internal temperature sensor
• 0.25° C resolution

• Range equivalent to microcontroller IC (-40° to 105° C)

• Various configurations for the temperature conversion (ignoring)

15



MMIO addresses for TEMP

• What addresses do we need? (ignore interrupts for now)
• 0x4000C000 – TASKS_START

• 0x4000C100 – EVENTS_DATARDY

• 0x4000C508 - TEMP

16



Accessing addresses in C

• What does this C code do?

  *(uint32_t*)(0x4000C000) = 1;

17



Accessing addresses in C

• What does this C code do?

  *(uint32_t*)(0x4000C000) = 1;

• 0x4000C000 is cast to a uint32_t*

• Then dereferenced

• And we write 1 to it

• “There are 32-bits of memory at 0x4000C000. Write a 1 there.”

18



Example code

• To the terminal!

• Let’s write it from scratch

19



Example code (temp_mmio app)

20



Using structs to manage MMIO access

• Writing simple C code and access peripherals is great!

• Problems:
• Need to remember all these long addresses

• Need to make sure compiler doesn’t stop us!

• Solution:
• Wrap entire access in a struct!

• Compilers turn it into the same thing in the end anyways

21



C structs

• Collection of variables placed together in memory

typedef struct {

    uint32_t variable_one;

    uint32_t variable_two;

    uint32_t array[2];

} example_struct_t;

• Placement rules - Variables are placed adjacent to each other in memory except:

• Variables are always placed at a multiple of their size
• Padding added to the end to make the total size a multiple of the biggest member

• Microcontrollers can usually ignore these: all registers are the same size!

22



Temperature peripheral MMIO struct

typedef struct {

} temp_regs_t;

23



Temperature peripheral MMIO struct

typedef struct {

    uint32_t TASKS_START;

    uint32_t TASKS_STOP;

    uint32_t _unused_A[62];

    uint32_t EVENTS_DATARDY;

    uint32_t _unused_B[0x204/4 - 1];

    uint32_t INTENSET;

    uint32_t INTENCLR;

    uint32_t _unused_C[(0x508 – 0x308)/4 – 1];

    uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

24

With increasingly verbose ways to write the 
size of the “unused” space (any of these will 
do, but don’t forget the -1)



Temperature peripheral MMIO struct

typedef struct {

    uint32_t TASKS_START;

    uint32_t TASKS_STOP;

    uint32_t _unused_A[62];

    uint32_t EVENTS_DATARDY;

    uint32_t _unused_B[0x204/4 - 1];

    uint32_t INTENSET;

    uint32_t INTENCLR;

    uint32_t _unused_C[(0x508 – 0x308)/4 – 1];

    uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

// code to access

TEMP_REGS->TASKS_START = 1;

while (TEMP_REGS->EVENTS_DATARDY == 0);

float temperature = ((float)TEMP_REGS->TEMP)/4.0;

25



Break + relevant xkcd

26https://xkcd.com/138/



27

• I/O Motivation

• Memory-Mapped I/O

• Controlling digital signals
• GPIO

• GPIOTE

Outline



Digital signals

• Simplest form of I/O

• Exist in two states:
• High (a.k.a. Set, a.k.a. 1)
• Low (a.k.a. Clear, a.k.a. 0)

• Simpler to interact with
• Constrained to two voltages
• With quick transitions between the 

two

• No math for voltage level
• Either high or low

28



Digital signals map to voltage ranges

• Upper range 
is high signal
• ~0.7*VDD

• Bottom range 
is low signal
• ~0.3*VDD

• Middle is 
undefined
• Only exists 

during 
transitions

29

http://www.sharetechnote.com/html/Electronics_CMOS.html

http://www.sharetechnote.com/html/Electronics_CMOS.html


General Purpose Input/Output (GPIO)

• Read/write from/to external pins on the microcontroller
• Two possible values: high (1) or low (0)

• Basic unit of operation for microcontrollers
• Allows them to interact with buttons and LEDs

• Every microcontroller has GPIO

30



GPIO on nRF52833

31



GPIO on nRF52833

32

Abstract model of the pin.
This isn’t really how the hardware is implemented. But it’s a reasonable model for users.



GPIO on nRF52833

33

Inputs and outputs to/from the peripheral.
GPIO could be controlled by other peripherals. Controlling a pin in use by other peripherals is bad.



GPIO on nRF52833

34

Registers within the GPIO peripheral.
Configure various things about setup.



GPIO on nRF52833

35

Peripheral contents are duplicated for each output pin.
Each pin has its own registers (or portions thereof).



Multiple ports

• nRF52833 has up to 42 I/O pins
• But only 32 can fit in a single 32-bit word

• Splits them into two “ports”

• Pins are named based on port
• P0.14 – Button A,  P0.23 – Button B

• P1.04 – LED column 4

36



GPIO on nRF52833

37

External pin on the microcontroller



GPIO on nRF52833

38

Output chain. Signal comes from OUT register, through output buffer, to external pin.



GPIO Output

• Outputs a high or low signal

• Output configurations
• High drive output (either for high, low, or both)

• Sources or sinks additional current
• For powering external devices

• Normal drive: ~2 mA

• High drive: ~10 mA

• Disconnect (a.k.a. High Impedance or High-Z)

• Wired-OR or Wired-AND scenarios (we’ll talk about these later in class)

39



GPIO on nRF52833

40

Input chain. Signal goes from pin, through input buffer, to IN register.



GPIO Input

• Reads in a signal as either high or low

• Input Configurations
• Input buffer connect/disconnect

• Allows the pin to be disabled if not being read from

• Pull

• Disabled, Pulldown, Pullup (we’ll discuss in a future lecture)

• Connects an internal pull up/down resistor (~13 kΩ)

• Sets default value of input

41



Electrical specifications

• High voltage range: 0.7*VDD to VDD (~2.3 volts)

• Low voltage range: Ground to 0.3*VDD (~1 volt)

• GPIO are extremely fast
• Transition time is <25 ns

• Connected directly to memory bus for faster interactions

• This allows complicated signal patterns to be replicated in software

• If they aren’t implemented as a hardware peripheral

• Known as “bit-banging”

42



Pin configuration

• DIR register controls direction (input or output) for each pin
• Each bit 0-31 corresponds to pin 0-31

• Reset value: 0x00000000 -> all pins are inputs by default

43



Controlling output level

• OUT register controls whether each pin is high or low
• Only meaningful if the pin is configured as an Output
• Again, each bit is a single pin and reset is 0x00000000 (all pins low)

44



Set/Clear registers

• OUT works traditionally: write a 1 for high, 0 for low

• OUTSET write a 1 to set that pin (high) zero has no effect

• OUTCLR write a 1 to clear that pin (low) zero has no effect
• Lets you modify a pin without modifying the others (or reading first)

45



Complex configuration

• If you want to change 
other pin configurations, 
you do so per pin with the 
PIN_CNF[n] registers
• There are 32 of them, one 

per pin

• Various fields correspond 
to different groups of bits
• Direction, Input buffer, 

Pullup/down, Drive 
strength, Sensing 
mechanism

• Bits not part of a field 
should be ignored

46



Writing to arbitrary bits

• Remember that you can’t just write to arbitrary bits
• You’ll have to use bit-operations to do so

• In C: &, |, ~, ^, <<, >>

• For a review of “bit masking” operations, see bonus slides

47



48

• I/O Motivation

• Memory-Mapped I/O

• Controlling digital signals
• GPIO

• GPIOTE

Outline



Handling interrupts from GPIO

• Separate peripheral, GPIOTE (GPIO Task/Event)
• Manages up to 8 individual pins

• Can read inputs and trigger interrupts

• Can also connect outputs from events on other peripherals (PPI)

• Can trigger interrupts for a “Port event” as well

• Any pin in the Port can trigger the interrupt

• Software checks which pin(s) caused the event to occur

• Very low power operation (works with system clocks off)

• Unclear why this is a separate peripheral
• Presumably too complicated/expensive to have 42 of them

49



Configuring individual input interrupts

• Pick an available GPIOTE channel (0-7)

• Configure it
• Port and Pin number
• Task (output), Event (input), or Disabled
• Polarity for input events

• Low-to-high
• High-to-low
• Toggle (both directions)

• Enable interrupts for channel in GPIOTE (and in NVIC!)

• Clear event in interrupt handler
• Doesn’t happen automatically

50



Sensing port events

• Uses the “Detect” signal. Generated from pin Sense configuration

51



Configuring port input interrupts

• Configure the Sense for each pin
• High or Low
• Allows different pins to have different “active” states

• Select detect mode
• Direct connection to pins
• Latched version (saved even if pin later changes back)

• Enable interrupts for port in GPIOTE (and in NVIC!)

• Clear event in interrupt handler and value in Latch register
• Doesn’t happen automatically

52



53

• I/O Motivation

• Memory-Mapped I/O

• Controlling digital signals
• GPIO

• GPIOTE

Outline



54

• Bonus: Bit Masking



Bit Masking

• How do you manipulate certain bits within a number?

• Combines some of the ideas we’ve already learned
• ~, &, |, <<, >>

• Steps
1. Create a “bit mask” which is a pattern to choose certain bits

2. Use & or | to combine it with your number

3. Optional: Use >> to move the bits to the least significant position

55



Bit mask values

• Selecting bits, use the AND operation
• 1 means to select that bit

• 0 means to not select that bit

• Writing bits
• Writing a one, use the OR operation

• 1 means to write a one to that position

• 0 is unchanged

• Writing a zero, use the AND operation

• 0 means to write a zero to that position

• 1 is unchanged

56

Select bottom four bits:
 num & 0x0F 

Set 6th bit to one:
 num | (1 << 6)

 num | (0b01000000)

Clear 6th bit to zero:
 num & (~(1 << 6))

 num & (~(0b01000000))

 num & (0b10111111)



Example: swap nibbles in byte

• Nibble - 4 bits (one hexit)
• Input: 0x4F -> Output 0xF4

• Method:

• 1. Shift and select upper four bits

• 2. Shift and select lower four bits

• 3. Combine the two nibbles

uint8_t lower = input >> 4;

uint8_t upper = input << 4;

uint8_t output = upper | lower; // combines two halves

57

What are the values of the 
new upper bits?

Unsigned -> Will be zero

Shifting implicitly zero’d out irrelevant bits.
Otherwise we would have needed an & operation too.



Example: selecting bits

• Select bits 2 and 3 from a number

58

Input: 0b011001000b01100100

Mask: 0b00001100

  0b01100100

 & 0b00001100

  0b00000100

Finally, shift right by two to get the 
values in the least significant position:

 0b00000001

In C:
result = (input & 0x0C) >> 2;


	Default Section
	Slide 1: Lecture 04 Input and Output

	Goals
	Slide 2: Administrivia
	Slide 3: Quiz coming soon
	Slide 4: Today’s Goals

	IO Motivation
	Slide 5: Outline
	Slide 6: Devices are the point of computers
	Slide 7: Devices are core to useful general-purpose computing
	Slide 8: Devices are essential to cyber-physical systems too
	Slide 9: Device access rates vary by many orders of magnitude

	Memory-Mapped IO
	Slide 10: Outline
	Slide 11: How does a computer talk with peripherals?
	Slide 12: Memory-mapped I/O (MMIO): treat devices like normal memory
	Slide 13: Memory map on nRF52833
	Slide 14: Example nRF52 peripheral placement
	Slide 15: TEMP on nRF52833 example
	Slide 16: MMIO addresses for TEMP
	Slide 17: Accessing addresses in C
	Slide 18: Accessing addresses in C
	Slide 19: Example code
	Slide 20: Example code (temp_mmio app)
	Slide 21: Using structs to manage MMIO access
	Slide 22: C structs
	Slide 23: Temperature peripheral MMIO struct
	Slide 24: Temperature peripheral MMIO struct
	Slide 25: Temperature peripheral MMIO struct
	Slide 26: Break + relevant xkcd

	GPIO
	Slide 27: Outline
	Slide 28: Digital signals
	Slide 29: Digital signals map to voltage ranges
	Slide 30: General Purpose Input/Output (GPIO)
	Slide 31: GPIO on nRF52833
	Slide 32: GPIO on nRF52833
	Slide 33: GPIO on nRF52833
	Slide 34: GPIO on nRF52833
	Slide 35: GPIO on nRF52833
	Slide 36: Multiple ports
	Slide 37: GPIO on nRF52833
	Slide 38: GPIO on nRF52833
	Slide 39: GPIO Output
	Slide 40: GPIO on nRF52833
	Slide 41: GPIO Input
	Slide 42: Electrical specifications
	Slide 43: Pin configuration
	Slide 44: Controlling output level
	Slide 45: Set/Clear registers
	Slide 46: Complex configuration
	Slide 47: Writing to arbitrary bits

	GPIOTE
	Slide 48: Outline
	Slide 49: Handling interrupts from GPIO
	Slide 50: Configuring individual input interrupts
	Slide 51: Sensing port events
	Slide 52: Configuring port input interrupts

	Wrapup
	Slide 53: Outline

	Bonus: Bit Masking
	Slide 54
	Slide 55: Bit Masking
	Slide 56: Bit mask values
	Slide 57: Example: swap nibbles in byte
	Slide 58: Example: selecting bits


