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Administrivia

• Office hours start today!
• Four 1.5-hour slots per week to get help or lab checkoffs
• Tried for a variety of times to meet everyone’s needs

• Make sure you have your personal lab setup working
• Ask in office hours or on Piazza if you run into issues

• Labs will start this Friday!!!
• You MUST come to your scheduled lab session
• Not really enough room for students to swap sections

• If there’s some known obligation and you give me a heads up, I could 
approve a few per week
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Changes to schedule

• Unfortunately, I’m out-of-town on Wednesday and Thursday
• In-class portion on Thursday is canceled

• Lecture for Thursday will be recorded and uploaded to Canvas
• Necessary information for lab on Friday

• Make sure you look through it

• Ask questions on Piazza!

• Lecture will be posted either late tonight or early tomorrow

• I will be back on Friday for labs!
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Today’s Goals

• Discuss challenges of embedded software

• Describe compilation and linking of embedded code
• Actually applies to all code, but you probably never learned much about 

linking before

• Introduce new software pattern: interrupts

• Explore the microcontroller boot process
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Review: C memory layout

• Stack Section
• Local variables
• Function arguments

• Heap Section
• Memory granted through malloc()

• Static Section (a.k.a. Data Section)
• Global variables
• Static function variables

• Text Section (a.k.a Code Section)
• Program code
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Assumptions of embedded programs

• Expect limitations
• Very little memory

• Very little computational power

• Very little energy

• Don’t expect a lot of support
• Likely no operating system

• Might not even have error reporting capabilities

• Moral: think differently about your programs
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Ramifications of limited memory

• Stack and Data sections are limited
• Be careful about too much recursion

• Be careful about large local variables

• Large data structures defined globally are preferred

• Fail at compile time

• In embedded, we often encourage global variables for large things

• Heap section is likely non-existent
• Why?
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Ramifications of limited memory

• Stack and Data sections are limited
• Be careful about too much recursion

• Be careful about large local variables

• Large data structures defined globally are preferred

• Fail at compile time

• In embedded, we often encourage global variables for large things

• Heap section is likely non-existent
• Why?

• Malloc could run out of memory at runtime
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Avoiding dynamic memory

• Malloc is scary in an embedded context

• What if there’s no more memory available?
• Traditional computer

• Swap memory to disk
• Worst case: wait for a process to end (or kill one)

• Embedded computer
• There’s likely only a single application
• And it’s the one asking for more memory
• So it’s not giving anything back anytime soon

• This is unlikely to happen at boot
• Instead it’ll happen hours or days into running as memory is slowly exhausted…
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Limitations on processing power

• Typically not all that important
• Code still runs pretty fast

• 10 MHz -> 100 ns per cycle (i.e. ~100 ns per instruction)

• Controlling hardware usually doesn’t have a lot of code complexity

• Quickly gets to the “waiting on hardware” part (apps are I/O bound)

• Problems
• Machine learning

• Learning on the device is neigh impossible

• Memory limitations make it hard to fit weights anyways

• Cryptography

• Public key encryption takes seconds to minutes
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Common programming languages for embedded

• C
• For all the reasons that you assume
• Easy to map variables to memory usage and code to instructions

• Assembly
• Not entirely uncommon, but rarer than you might guess
• C code optimized by a modern compiler is likely faster
• Notable uses:

• Cryptography to create deterministic algorithms
• Operating Systems to handle process swaps

• C++
• Similar to C but with better library support
• Libraries take up a lot of code space though ~100 KB
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Rarer programming languages for embedded

• Rust
• Modern language with safety and reliability guarantees

• Becoming relevant in the embedded space

• But with a high learning curve

• Python, Javascript, etc.
• Mostly toy languages

• Fine for simple things but incapable of complex operations

• Especially low-level things like managing memory
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What’s missing from programming languages?

• The embedded domain has several requirements that other 
domains do not

• What is missing from programming languages that it wants?
• Sense of time

• Sense of energy
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Programming languages have no sense of time

• Imagine a system that needs to send messages to a motor every 
10 milliseconds
• Write a function that definitely completes within 10 milliseconds

• Accounting for timing when programming is very challenging
• We can profile code and determine timing at runtime

• If we know many details of hardware, instructions can give timing

• Unless the code interacts with external devices
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Determining energy use is rather complicated

• Software might
• Start executing a loop

• Turn on/off an LED

• Send messages over a wired bus to another device

• Determining energy these operations take is really difficult
• Even with many details of the hardware

• Different choices of processor clocks can have a large impact

• Often profiled at runtime after writing the code

• Iterative write-test-modify cycle
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Break + Say hi to your neighbors

• Things to share
• Name

• Major

• One of the following

• Favorite Candy

• Favorite Pokemon

• Favorite Emoji
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Break + Say hi to your neighbors

• Things to share
• Name -Branden

• Major -Electrical and Computer Engineering, and Computer Science

• One of the following

• Favorite Candy - Twix

• Favorite Pokemon - Eevee

• Favorite Emoji - 🍢
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Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for code size instead of speed)
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Cross compilers compile for different architectures

• The compiler we’ll be using is a cross compiler
• Run on one architecture but compile code for another

• Example: runs on x86-64 but compiles armv7e-m

• GCC naming scheme: ARCH-VENDOR-(OS-)-ABI-gcc
• arm-none-eabi-gcc

• ARM architecture

• No vendor

• No OS

• Embedded Application Binary Interface

• Others: arm-none-linux-gnueabi-gcc, i686-pc-windows-msvc-gcc
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Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together

• Resolve dependencies

• Point function calls at correct place

• Connect creation and uses of global variables
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Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do x86-64 compilers know which addresses to use?
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Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do x86-64 compilers know which addresses to use?
• Virtual memory allows all applications to use the same memory addresses

• Embedded solution
• Only run a single application

• Provide an LD file

• Specifies memory layout for a certain system

• Places sections of code in different places in memory
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Anatomy of an LD file

• nRF52833: 512 KB Flash, 128 KB SRAM

• First, LD file defines memory regions

MEMORY {

  FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x80000

  RAM (rwx) :  ORIGIN = 0x20000000, LENGTH = 0x20000

} 

• A neat thing about microcontrollers: pointers have meaning
• Just printing the value of a pointer can tell you if it’s in Flash or RAM
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Anatomy of an LD file

• It then places sections of code into those memory regions

    .text : {

        KEEP(*(.Vectors))

        *(.text*)

        *(.rodata*)

        . = ALIGN(4);

    } > FLASH

    __etext = .;
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.data : AT (__etext) {

        __data_start__ = .;

        *(.data*)

        __data_end__ = .;

 } > RAM 

 .bss :    {

        . = ALIGN(4);

        __bss_start__ = .;

        *(.bss*)

        . = ALIGN(4);

        __bss_end__ = .;

 } > RAM



Sections of code

• Where do these sections come from?

• Most are generated by the compiler
• .text, .rodata, .data, .bss

• You need to be deep in the docs to figure out how the esoteric ones work

• Some are generated by the programmer
• Allows you to place certain data items in a specific way

__attribute__((section(".foo")))

int test[10] = {0,0,0,0,0,0,0,0,0,0};
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Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly
• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together
• Resolve dependencies

• Point function calls at correct place
• Connect creation and uses of global variables

• Output: a binary (or hex) file

28



Loading the hex file onto a board

• This is a use case for JTAG
• You provide it a hex file which specifies addresses and values

• It writes those into Flash on the microcontroller

• The LD file already specified addresses
• So passing around hex files is enough to load an application

• But a hex file for one microcontroller won’t work on another with a 
different memory layout
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Example

• Demonstrated in the blink application in lab repo
• https://github.com/nu-ce346/nu-microbit-

base/tree/main/software/apps/blink
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Embedded environments

• There are a multitude of embedded software systems
• Every microcontroller vendor has their own

• Popular platforms like Arduino

• We’re using the Nordic software development libraries plus some 
extensions made by my research group
• It’ll be a week until that matters for the most part

• We’ll start off by writing low-level drivers ourselves without libraries
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Software Development Kit (SDK)

• Libraries provided by Nordic for using their microcontrollers
• Actually incredibly well documented! (relatively)

• Various peripherals and library tools

• SDK documentation
• https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/index.html

• Warning: search doesn’t really work

• Possibly more useful: the list of data structures
• Search that page for whatever “thing” you’re working with
• https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/annotated.html
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nRF52x-base

• Wrapper built around the SDK by Lab11
• Branden Ghena, Brad Campbell (UVA), Neal Jackson, a few others
• Allows everything to be used with Makefiles and command line
• https://github.com/lab11/nrf52x-base

• We include it as a submodule
• It has a copy of the SDK code and softdevice binaries
• It has a whole Makefile system to include to proper C and H files
• We include a Board file that specifies our specific board’s needs and 

capabilities

• Go to repo to explain
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Break
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What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

37

This is the “polling” 
model of I/O.

“Poll” the peripheral 
in software repeatedly 
to see if it’s ready yet.



Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA
3. Write command(s) to COMMAND
4. while STATUS==BUSY; Wait

• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Problem: imagine a keyboard device
• CPU could be waiting for minutes before data arrives
• Need a way to notify CPU when an event occurs

• Interrupts!
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Interrupts

• What is an interrupt?
• Some event which causes the processor to stop normal execution

• The processor instead jumps to a software “handler” for that event

• Then returns back to what it was doing afterwards

• What causes interrupts?
• Hardware exceptions

• Divide by zero, Undefined Instruction, Memory bus error

• Software

• Syscall, Software Interrupt (SWI)

• External hardware

• Input pin, Timer, various “Data Ready”
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Interrupts, visually
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Some code
that’s executing



Interrupts, visually
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Interrupts, visually
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ARM Nested Vectored Interrupt Controller (NVIC)

• Manages interrupt requests (IRQ)
• Stores all caller-saved registers on the stack

• So the handler code doesn’t overwrite them

• Moves execution to proper handler, a.k.a. Interrupt Service Routine (ISR)

• Restores registers after handler returns and moves execution back
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Interrupts can 
preempt other 

interrupts!

Jump directly to 
the interrupt 

handler

Handles interrupt 
entry and exit

- Stacking
- Unstacking
- Priorities



ARM Vector table

• List of function pointers to 
handler for each 
interrupt/exception

• First 15 are architecture-
specific exceptions

• After that are 
microcontroller interrupt 
signals
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Vector table in software

• Placed in its own section
• LD file puts it first in Flash

• Reset_Handler determines 
where software starts 
executing

• After that are all exception 
and interrupt handlers
• All function pointers to some 

C code somewhere

45



NVIC functionality

• NVIC functions
• NVIC_EnableIRQ(number)

• NVIC_DisableIRQ(number)

• NVIC_SetPriority(number, priority)

• Technically 256 priorities
• Only 8 are implemented

• Must enable interrupts in two places!
• Enabling interrupt in the peripheral will generate the signal
• Enabling interrupt in the NVIC will cause signal to jump to handler

• Priority determines which interrupt goes first
• And determines how interrupts are nested
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Nested interrupts, visually
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Break + Open Question

• When should a system use polling versus interrupts?
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Break + Open Question

• When should a system use polling versus interrupts?

• Polling
• Great if the device is going to respond immediately (like 1 cycle)

• Important if we need to respond very quick (less than a microsecond)

• Interrupts
• Great if we’ll need to wait a long time for status to change

• Still responds pretty quickly, but not immediately

• Needs to context switch from running code to interrupt handler
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How does a microcontroller start running code?

• Power comes on

• Microcontroller needs to start executing assembly code

• You expect your main() function to run
• But a few things need to happen first
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Step 0: set a stack pointer

• Assembly code might need to write data to the stack
• Might call functions that need to stack registers

• ARM: Valid address for the stack pointer is at address 0 in Flash
• Needs to point to somewhere in RAM

• Hardware loads it into the Stack Pointer when it powers on
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Step 1: set the program counter (PC)

• a.k.a. the Instruction Pointer (IP) in x86 land

• 32-bit ARM: valid instruction pointer is at address 4 in Flash
• Could point to RAM, usually to Flash though

• In interrupt terms: this is the “Reset Handler”!

• Automatically loaded into the PC after the SP is loaded

• Again, hardware does this
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Step 2: “reset handler” prepares memory

• Code that handles system resets
• Either reset button or power-on reset
• Address was loaded into PC in Step 1

• Reset handler code:
• Loads initial values of .data section from Flash into RAM
• Loads zeros as values of .bss section in RAM
• Calls SystemInit

• Starts correct clocks for the system
• Handles various hardware configurations/errata

• Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c
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Step 3: set up C runtime

• _start is provided by newlib
• An implementation of libc – the C standard library

• Startup is a file usually named crt0

• Does more setup, almost none of which is relevant for our system
• Probably is this code that actually zeros out .bss

• Sets argc and argv to 0

• Calls main()  !!!

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD
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Online writeup with way more details and a diagram

• Relevant guide!!
• https://embeddedar

tistry.com/blog/2019
/04/17/exploring-
startup-
implementations-
newlib-arm/

• Covers the nRF52!
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