
Lecture 03
Embedded Software

CE346 – Microprocessor System Design

Branden Ghena – Fall 2023

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

• Office hours start today!
• Four 1.5-hour slots per week to get help or lab checkoffs
• Tried for a variety of times to meet everyone’s needs

• Make sure you have your personal lab setup working
• Ask in office hours or on Piazza if you run into issues

• Labs will start this Friday!!!
• You MUST come to your scheduled lab session
• Not really enough room for students to swap sections

• If there’s some known obligation and you give me a heads up, I could
approve a few per week

2

Changes to schedule

• Unfortunately, I’m out-of-town on Wednesday and Thursday
• In-class portion on Thursday is canceled

• Lecture for Thursday will be recorded and uploaded to Canvas
• Necessary information for lab on Friday

• Make sure you look through it

• Ask questions on Piazza!

• Lecture will be posted either late tonight or early tomorrow

• I will be back on Friday for labs!

3

Today’s Goals

• Discuss challenges of embedded software

• Describe compilation and linking of embedded code
• Actually applies to all code, but you probably never learned much about

linking before

• Introduce new software pattern: interrupts

• Explore the microcontroller boot process

4

5

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Interrupts

• Boot Process

Outline

Review: C memory layout

• Stack Section
• Local variables
• Function arguments

• Heap Section
• Memory granted through malloc()

• Static Section (a.k.a. Data Section)
• Global variables
• Static function variables

• Text Section (a.k.a Code Section)
• Program code

6

Stack

Heap

Static

TextAddress
0x0000000000000000

Address
0xFFFFFFFFFFFFFFFF

Assumptions of embedded programs

• Expect limitations
• Very little memory

• Very little computational power

• Very little energy

• Don’t expect a lot of support
• Likely no operating system

• Might not even have error reporting capabilities

• Moral: think differently about your programs

7

Ramifications of limited memory

• Stack and Data sections are limited
• Be careful about too much recursion

• Be careful about large local variables

• Large data structures defined globally are preferred

• Fail at compile time

• In embedded, we often encourage global variables for large things

• Heap section is likely non-existent
• Why?

8

Ramifications of limited memory

• Stack and Data sections are limited
• Be careful about too much recursion

• Be careful about large local variables

• Large data structures defined globally are preferred

• Fail at compile time

• In embedded, we often encourage global variables for large things

• Heap section is likely non-existent
• Why?

• Malloc could run out of memory at runtime

9

Avoiding dynamic memory

• Malloc is scary in an embedded context

• What if there’s no more memory available?
• Traditional computer

• Swap memory to disk
• Worst case: wait for a process to end (or kill one)

• Embedded computer
• There’s likely only a single application
• And it’s the one asking for more memory
• So it’s not giving anything back anytime soon

• This is unlikely to happen at boot
• Instead it’ll happen hours or days into running as memory is slowly exhausted…

10

Limitations on processing power

• Typically not all that important
• Code still runs pretty fast

• 10 MHz -> 100 ns per cycle (i.e. ~100 ns per instruction)

• Controlling hardware usually doesn’t have a lot of code complexity

• Quickly gets to the “waiting on hardware” part (apps are I/O bound)

• Problems
• Machine learning

• Learning on the device is neigh impossible

• Memory limitations make it hard to fit weights anyways

• Cryptography

• Public key encryption takes seconds to minutes

11

Common programming languages for embedded

• C
• For all the reasons that you assume
• Easy to map variables to memory usage and code to instructions

• Assembly
• Not entirely uncommon, but rarer than you might guess
• C code optimized by a modern compiler is likely faster
• Notable uses:

• Cryptography to create deterministic algorithms
• Operating Systems to handle process swaps

• C++
• Similar to C but with better library support
• Libraries take up a lot of code space though ~100 KB

12

Rarer programming languages for embedded

• Rust
• Modern language with safety and reliability guarantees

• Becoming relevant in the embedded space

• But with a high learning curve

• Python, Javascript, etc.
• Mostly toy languages

• Fine for simple things but incapable of complex operations

• Especially low-level things like managing memory

13

What’s missing from programming languages?

• The embedded domain has several requirements that other
domains do not

• What is missing from programming languages that it wants?
• Sense of time

• Sense of energy

14

Programming languages have no sense of time

• Imagine a system that needs to send messages to a motor every
10 milliseconds
• Write a function that definitely completes within 10 milliseconds

• Accounting for timing when programming is very challenging
• We can profile code and determine timing at runtime

• If we know many details of hardware, instructions can give timing

• Unless the code interacts with external devices

15

Determining energy use is rather complicated

• Software might
• Start executing a loop

• Turn on/off an LED

• Send messages over a wired bus to another device

• Determining energy these operations take is really difficult
• Even with many details of the hardware

• Different choices of processor clocks can have a large impact

• Often profiled at runtime after writing the code

• Iterative write-test-modify cycle

16

Break + Say hi to your neighbors

• Things to share
• Name

• Major

• One of the following

• Favorite Candy

• Favorite Pokemon

• Favorite Emoji

17

Break + Say hi to your neighbors

• Things to share
• Name -Branden

• Major -Electrical and Computer Engineering, and Computer Science

• One of the following

• Favorite Candy - Twix

• Favorite Pokemon - Eevee

• Favorite Emoji - 🍢

18

19

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Interrupts

• Boot Process

Outline

Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for code size instead of speed)

20

Cross compilers compile for different architectures

• The compiler we’ll be using is a cross compiler
• Run on one architecture but compile code for another

• Example: runs on x86-64 but compiles armv7e-m

• GCC naming scheme: ARCH-VENDOR-(OS-)-ABI-gcc
• arm-none-eabi-gcc

• ARM architecture

• No vendor

• No OS

• Embedded Application Binary Interface

• Others: arm-none-linux-gnueabi-gcc, i686-pc-windows-msvc-gcc

21

Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together

• Resolve dependencies

• Point function calls at correct place

• Connect creation and uses of global variables

22

Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do x86-64 compilers know which addresses to use?

23

Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do x86-64 compilers know which addresses to use?
• Virtual memory allows all applications to use the same memory addresses

• Embedded solution
• Only run a single application

• Provide an LD file

• Specifies memory layout for a certain system

• Places sections of code in different places in memory

24

Anatomy of an LD file

• nRF52833: 512 KB Flash, 128 KB SRAM

• First, LD file defines memory regions

MEMORY {

 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x80000

 RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x20000

}

• A neat thing about microcontrollers: pointers have meaning
• Just printing the value of a pointer can tell you if it’s in Flash or RAM

25

Anatomy of an LD file

• It then places sections of code into those memory regions

 .text : {

 KEEP(*(.Vectors))

 (.text)

 (.rodata)

 . = ALIGN(4);

 } > FLASH

 __etext = .;

26

.data : AT (__etext) {

 __data_start__ = .;

 (.data)

 __data_end__ = .;

 } > RAM

 .bss : {

 . = ALIGN(4);

 __bss_start__ = .;

 (.bss)

 . = ALIGN(4);

 __bss_end__ = .;

 } > RAM

Sections of code

• Where do these sections come from?

• Most are generated by the compiler
• .text, .rodata, .data, .bss

• You need to be deep in the docs to figure out how the esoteric ones work

• Some are generated by the programmer
• Allows you to place certain data items in a specific way

__attribute__((section(".foo")))

int test[10] = {0,0,0,0,0,0,0,0,0,0};

27

Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly
• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together
• Resolve dependencies

• Point function calls at correct place
• Connect creation and uses of global variables

• Output: a binary (or hex) file

28

Loading the hex file onto a board

• This is a use case for JTAG
• You provide it a hex file which specifies addresses and values

• It writes those into Flash on the microcontroller

• The LD file already specified addresses
• So passing around hex files is enough to load an application

• But a hex file for one microcontroller won’t work on another with a
different memory layout

29

Example

• Demonstrated in the blink application in lab repo
• https://github.com/nu-ce346/nu-microbit-

base/tree/main/software/apps/blink

30

https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/blink
https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/blink

31

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Interrupts

• Boot Process

Outline

Embedded environments

• There are a multitude of embedded software systems
• Every microcontroller vendor has their own

• Popular platforms like Arduino

• We’re using the Nordic software development libraries plus some
extensions made by my research group
• It’ll be a week until that matters for the most part

• We’ll start off by writing low-level drivers ourselves without libraries

32

Software Development Kit (SDK)

• Libraries provided by Nordic for using their microcontrollers
• Actually incredibly well documented! (relatively)

• Various peripherals and library tools

• SDK documentation
• https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/index.html

• Warning: search doesn’t really work

• Possibly more useful: the list of data structures
• Search that page for whatever “thing” you’re working with
• https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/annotated.html

33

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/index.html
https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/annotated.html

nRF52x-base

• Wrapper built around the SDK by Lab11
• Branden Ghena, Brad Campbell (UVA), Neal Jackson, a few others
• Allows everything to be used with Makefiles and command line
• https://github.com/lab11/nrf52x-base

• We include it as a submodule
• It has a copy of the SDK code and softdevice binaries
• It has a whole Makefile system to include to proper C and H files
• We include a Board file that specifies our specific board’s needs and

capabilities

• Go to repo to explain

34

https://github.com/lab11/nrf52x-base

Break

35

36

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Interrupts

• Boot Process

Outline

What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

37

This is the “polling”
model of I/O.

“Poll” the peripheral
in software repeatedly
to see if it’s ready yet.

Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA
3. Write command(s) to COMMAND
4. while STATUS==BUSY; Wait

• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Problem: imagine a keyboard device
• CPU could be waiting for minutes before data arrives
• Need a way to notify CPU when an event occurs

• Interrupts!

38

Interrupts

• What is an interrupt?
• Some event which causes the processor to stop normal execution

• The processor instead jumps to a software “handler” for that event

• Then returns back to what it was doing afterwards

• What causes interrupts?
• Hardware exceptions

• Divide by zero, Undefined Instruction, Memory bus error

• Software

• Syscall, Software Interrupt (SWI)

• External hardware

• Input pin, Timer, various “Data Ready”

39

Interrupts, visually

40

Some code
that’s executing

Interrupts, visually

41

Some code
that’s executing

Interrupt
triggers!

Interrupt handler
code

Interrupts, visually

42

Some code
that’s executing

Interrupt
triggers!

Interrupt handler
code

Continue
original code

ARM Nested Vectored Interrupt Controller (NVIC)

• Manages interrupt requests (IRQ)
• Stores all caller-saved registers on the stack

• So the handler code doesn’t overwrite them

• Moves execution to proper handler, a.k.a. Interrupt Service Routine (ISR)

• Restores registers after handler returns and moves execution back

43

Interrupts can
preempt other

interrupts!

Jump directly to
the interrupt

handler

Handles interrupt
entry and exit

- Stacking
- Unstacking
- Priorities

ARM Vector table

• List of function pointers to
handler for each
interrupt/exception

• First 15 are architecture-
specific exceptions

• After that are
microcontroller interrupt
signals

44

Vector table in software

• Placed in its own section
• LD file puts it first in Flash

• Reset_Handler determines
where software starts
executing

• After that are all exception
and interrupt handlers
• All function pointers to some

C code somewhere

45

NVIC functionality

• NVIC functions
• NVIC_EnableIRQ(number)

• NVIC_DisableIRQ(number)

• NVIC_SetPriority(number, priority)

• Technically 256 priorities
• Only 8 are implemented

• Must enable interrupts in two places!
• Enabling interrupt in the peripheral will generate the signal
• Enabling interrupt in the NVIC will cause signal to jump to handler

• Priority determines which interrupt goes first
• And determines how interrupts are nested

46

Nested interrupts, visually

47

Some code
that’s executing

Interrupt
triggers!

Interrupt handler

Continue
original code

Higher priority
Interrupt triggers!

continues

Interrupt handler

Break + Open Question

• When should a system use polling versus interrupts?

48

Break + Open Question

• When should a system use polling versus interrupts?

• Polling
• Great if the device is going to respond immediately (like 1 cycle)

• Important if we need to respond very quick (less than a microsecond)

• Interrupts
• Great if we’ll need to wait a long time for status to change

• Still responds pretty quickly, but not immediately

• Needs to context switch from running code to interrupt handler

49

50

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Interrupts

• Boot Process

Outline

How does a microcontroller start running code?

• Power comes on

• Microcontroller needs to start executing assembly code

• You expect your main() function to run
• But a few things need to happen first

51

Step 0: set a stack pointer

• Assembly code might need to write data to the stack
• Might call functions that need to stack registers

• ARM: Valid address for the stack pointer is at address 0 in Flash
• Needs to point to somewhere in RAM

• Hardware loads it into the Stack Pointer when it powers on

52

Step 1: set the program counter (PC)

• a.k.a. the Instruction Pointer (IP) in x86 land

• 32-bit ARM: valid instruction pointer is at address 4 in Flash
• Could point to RAM, usually to Flash though

• In interrupt terms: this is the “Reset Handler”!

• Automatically loaded into the PC after the SP is loaded

• Again, hardware does this

53

Step 2: “reset handler” prepares memory

• Code that handles system resets
• Either reset button or power-on reset
• Address was loaded into PC in Step 1

• Reset handler code:
• Loads initial values of .data section from Flash into RAM
• Loads zeros as values of .bss section in RAM
• Calls SystemInit

• Starts correct clocks for the system
• Handles various hardware configurations/errata

• Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

54

https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S
https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

Step 3: set up C runtime

• _start is provided by newlib
• An implementation of libc – the C standard library

• Startup is a file usually named crt0

• Does more setup, almost none of which is relevant for our system
• Probably is this code that actually zeros out .bss

• Sets argc and argv to 0

• Calls main() !!!

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

55

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

Online writeup with way more details and a diagram

• Relevant guide!!
• https://embeddedar

tistry.com/blog/2019
/04/17/exploring-
startup-
implementations-
newlib-arm/

• Covers the nRF52!

56

https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/
https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/

57

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Interrupts

• Boot Process

Outline

	Default Section
	Slide 1: Lecture 03 Embedded Software

	Goals
	Slide 2: Administrivia
	Slide 3: Changes to schedule
	Slide 4: Today’s Goals

	Embedded Software
	Slide 5: Outline
	Slide 6: Review: C memory layout
	Slide 7: Assumptions of embedded programs
	Slide 8: Ramifications of limited memory
	Slide 9: Ramifications of limited memory
	Slide 10: Avoiding dynamic memory
	Slide 11: Limitations on processing power
	Slide 12: Common programming languages for embedded
	Slide 13: Rarer programming languages for embedded
	Slide 14: What’s missing from programming languages?
	Slide 15: Programming languages have no sense of time
	Slide 16: Determining energy use is rather complicated
	Slide 17: Break + Say hi to your neighbors
	Slide 18: Break + Say hi to your neighbors

	Embedded Toolchain
	Slide 19: Outline
	Slide 20: Embedded compilation steps
	Slide 21: Cross compilers compile for different architectures
	Slide 22: Embedded compilation steps
	Slide 23: Informing linker of system memory
	Slide 24: Informing linker of system memory
	Slide 25: Anatomy of an LD file
	Slide 26: Anatomy of an LD file
	Slide 27: Sections of code
	Slide 28: Embedded compilation steps
	Slide 29: Loading the hex file onto a board
	Slide 30: Example

	Lab software environment
	Slide 31: Outline
	Slide 32: Embedded environments
	Slide 33: Software Development Kit (SDK)
	Slide 34: nRF52x-base
	Slide 35: Break

	Interrupts
	Slide 36: Outline
	Slide 37: What do interactions with devices look like?
	Slide 38: Waiting can be a waste of CPU time
	Slide 39: Interrupts
	Slide 40: Interrupts, visually
	Slide 41: Interrupts, visually
	Slide 42: Interrupts, visually
	Slide 43: ARM Nested Vectored Interrupt Controller (NVIC)
	Slide 44: ARM Vector table
	Slide 45: Vector table in software
	Slide 46: NVIC functionality
	Slide 47: Nested interrupts, visually
	Slide 48: Break + Open Question
	Slide 49: Break + Open Question

	Boot process
	Slide 50: Outline
	Slide 51: How does a microcontroller start running code?
	Slide 52: Step 0: set a stack pointer
	Slide 53: Step 1: set the program counter (PC)
	Slide 54: Step 2: “reset handler” prepares memory
	Slide 55: Step 3: set up C runtime
	Slide 56: Online writeup with way more details and a diagram

	Wrapup
	Slide 57: Outline

