
Northwestern CE346
Fall 2023

Lab 0 - Personal Lab Setup
Goals

● Get a build environment configured for the future labs and project
● Run C code on the Microbit
● Simple debugging in an embedded context

Equipment
● Computer that you will use for labs

○ If Windows: needs at least 20 GB of space
○ USB ports

● Micro:bit and cables (you can do all of the setup except testing without this)

This lab is required for Fall 2023. If you run into problems, please reach out on Piazza or during
Office Hours and I will provide help!!

Fair warning: I’m certain there are some bugs in here. Probably some sentences that just trail
off part-way through too. Let me know and I’ll fix it.

There’s no submission here to prove you’ve completed this. Just be sure to do it before we have
our first lab session!!

Index:
● MacOS Instructions
● Windows Instructions
● Linux Instructions

● Bonus - WSL Instructions

MacOS Instructions
The good news here is that MacOS natively supports all of the software we need. Since it’s not
a clean installation though (presumably you’ve been using your Mac for other programming
tasks) some of these steps might fail, or react differently. Power through as best you can and
ask questions whenever you need!

To my knowledge this will all work great on both Intel and ARM Macs. I have a personal Intel
Macbook that can program these boards (although I installed all the stuff years and years ago). I
tested all of these instructions on an ARM M1 Macbook Air.

● Open a terminal window
○ We’ll run all of the following green commands in the terminal window

● Install MacOS command line developer tools by running xcode-select --install
○ You may have to agree to some terms and conditions
○ This might complete immediately if it’s already installed. If not, it’ll take a few

minutes to finish (and it’s just terrible at estimating the time remaining for some
reason)

● Install Homebrew by running: /bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.s
h)" (that’s all one command)

○ If that’s too much to type, you can go here and copy the “Install Homebrew”
command, it’s the same thing: https://brew.sh/

○ You should also be able to copy-paste from here into terminal. You’ll have to use
Cmd+Shift+V to paste, or right click and choose “Paste”.

○ You’ll have to type your password in to run it. Note that it won’t show you any
feedback when you type, just type the password anyways and hit enter

○ This shouldn’t take all that long to install

● Homebrew might say “Run these two commands in your terminal to add Homebrew to
your PATH:”. If it does, run both of those commands.

○ You can highlight, right click, copy, and then paste it to run it
○ They add things to PATH so you can find executables later. We can always fix

after-the-fact if we need to. You’ll know things are broken if it can’t find the
arm-none-eabi-gcc executable even after you install it.

● Install our compiler with brew tap ARMmbed/homebrew-formulae && brew
update && brew install
ARMmbed/homebrew-formulae/arm-none-eabi-gcc

○ Again, that’s one long command

https://brew.sh/

● Install our JTAG tools with brew install open-ocd

● Install our serial console with pip3 install pyserial
○ You might get a warning that “blah blah is not on PATH”. You’ll need to add it to

your PATH. If you don’t know how to do this, the following will work:
echo "export PATH=\"`python3 -m site

--user-base`/bin:\$PATH\"" >> ~/.zshrc
■ All one command
■ If you’re using Bash, that should either be ~/.bashrc or ~/.profile instead of

~/.zshrc
■ Then you’ll need to close your terminal and open a new one

● Clone the class github repo with git clone
https://github.com/nu-ce346/nu-microbit-base.git

● cd into the repo and then run git submodule update --init --recursive
○ This is the magic command that fixes all git submodule issues
○ This will take a hot minute to run. There’s lots of stuff to download

● cd into “software/apps/blink” and run make
○ This should compile the code if everything is working!!
○ You’re done! There’s some bonus stuff below though.

● IF COMPILING DOESN’T WORK:
○ It could be an issue with things not being in your PATH. That would result in it not

finding certain executables you installed, like arm-none-eabi-gcc. Try figuring
out where they installed and add them to your PATH.

○ It could be an issue with a Space character in the file path. None of the
directories including the code may have a space character (or other special
character like plus or colon). They break Makefiles hard. A common issue here is
if your username has a space in it. The solution is to move the directory to
somewhere without any spaces in the folder names.

● If you have a microbit already, you can run make flash and that will actually load the
program onto the board. The LED should start blinking

● Also make sure you have some editor installed that you’re happy with. You’ll use
terminal to compile and flash the board, but you don’t have to edit files in terminal if you
don’t want to.

Windows Instructions
We don’t support native Windows, so you really need to have Linux instead. You’ve got two
options here: you could install a virtual machine (these instructions cover that) or you could use
Windows Subsystem for Linux (WSL) if you’re feeling really bold. Instructions for WSL are at the
end.

This is sort of a pain. These are the longest instructions of any part of this writeup. Most of that
time was spent trying to bludgeon Virtual Box into being usable, which is pretty disappointing in
the year 2023…

1. Install a Virtual Machine
A virtual machine (VM) allows you to run an operating system inside a windowed environment
while running windows. Basically, it creates a “virtual” computer inside your computer. This has
some consequences about speed and security (see CS343), but works great for our needs.

● Install VirtualBox. You can download it here: https://www.virtualbox.org/wiki/Downloads
○ You want the “Windows Hosts” option. At time of writing this was version 7.0.10
○ VirtualBox is most well-known VM software and should suffice
○ I personally use VmWare Workstation Player which is a bit fancier and would also

work. Other VM software would be fine too. These instructions will be VirtualBox
based though.

● Follow the installation instructions to install it
○ The defaults are all fine. Just keep hitting “yes” for a while.

2. Install Linux on the Virtual Machine
Many flavors of Linux would work just fine, but we’re going to use Ubuntu. It’s very popular and
widely used with lots of support on the internet.

● Download Ubuntu: https://ubuntu.com/download/desktop
○ Download the most recent LTS (Long Term Support) version. At time of writing

this was 22.04.3 LTS
○ This is about 5 GB in size, so it’s going to take a while to download.
○ Be sure to delete it after you’re done with this setup if you’re short on space!

● Open VirtualBox and hit the “New” button on the homepage
○ Add a name for the machine
○ Choose the Ubuntu .iso file as the “ISO Image”

https://www.virtualbox.org/wiki/Downloads
https://ubuntu.com/download/desktop

■ VirtualBox should automatically figure out that it is an Ubuntu 64-bit image
and will say that it can install it “unattendedly”. This is great and we want
this.

○ Hit next

● You have reached the “Unattended Guest OS Install Step”
○ Enter a username and password. You’ll need to remember the password to log in

again in the future!!
○ Select the “Guest Additions” checkbox

■ This installs extra things that make Ubuntu aware it’s in a virtual machine
and lets it adapt to do that better. For example, it’ll automatically adjust its
“monitor size” to whatever the size of your VirtualBox window is. We want
this.

○ Hit next

● You have reached the “Hardware” step
○ Set the “Base Memory” to roughly half of your computer’s RAM, but not less than

2048 MB.
■ 4-8 GB (4096-8192 MB) is the sweet spot here

○ “Processors” can stay at 1
○ Do not check the EFI checkbox
○ Hit next

● You have reached the “Virtual Hard disk” step
○ Choose “Create a Virtual Hard Disk Now” (should be selected by default)
○ Set the “Disk Size” to 100 GB

■ Do NOT check the “pre-allocate full size” checkbox
■ The hard disk will not take up 100 GB. It will only take up the space it

needs and can grow up to 100 GB if you really needed it
○ Hit next

● You have reached the “Summary” step
○ Hit Finish
○ VirtualBox will automatically start up a window and will install Ubuntu for you with

the correct settings. Let it go on its own and don’t disturb it. This will take a few
minutes at least.

■ I wouldn’t click inside the window while it’s running in case that disrupts
things. Probably not, but why risk it?

■ It’ll eventually finish installing and restart itself. When it stops on the login
page, it’s done

● Log in to Ubuntu using the password you created a bit ago
○ You remember it, right?🙃

● You’ll have to click through a “Welcome to Ubuntu” dialogue for a bit. Nothing important
there.

● Open a terminal in Ubuntu
○ You can click the desktop and hit “Ctrl+Alt+T”
○ Or you can hit the 9-dot box pattern in the bottom left and then type “terminal”
○ You’ll type the green commands into terminal and run them

● Add yourself as a sudoer (no idea why this isn’t enabled by default)
○ Run su -
○ Type your password
○ Then run sudo adduser [your username] sudo
○ Then reboot the computer again

● Open a terminal again and update Ubuntu
○ Run sudo apt update
○ Run sudo apt upgrade

● Install Virtualbox guest extensions
○ Run sudo apt install build-essential dkms

linux-headers-$(uname -r) virtualbox-ext-pack
virtualbox-dkms virtualbox-guest-utils virtualbox-guest-x11

○ That’s one long command
○ You should also be able to copy-paste from here into terminal. You’ll have to use

Cmd+Shift+V to paste, or right click and choose “Paste”.
○ Actually power off Ubuntu this time

● Go to the Virtual Box settings for your machine (the yellow gear)
○ Choose the Display page on the left
○ For “Video Memory” increase it to 128 MB
○ Check the “Enable 3D Acceleration” checkbox
○ Now you can boot up Ubuntu again and log in

● You might be able to drag the bottom-right corner of the VM window to increase the size
of the Ubuntu desktop now. See if that works acceptably.

○ If it doesn’t, in Ubuntu, right-click the desktop and choose “Display Settings”
■ Set the Resolution to something reasonably large. The Virtual Machine

window should get larger.
■ Play around and find something that is acceptable for using Ubuntu

● You should now have a “usable” Ubuntu installation. Continue on to the “Linux”
instructions to actually get the stuff installed that you need for lab.

Linux Instructions
This part is pretty easy. If you’ve got Linux you’re only a few quick steps away from having a
working setup.

● Install various pre-requisites: sudo apt install build-essential
python3-pip python3-serial git vim emacs meld screen

● Install our compiler: sudo apt install gcc-arm-none-eabi

● Install our JTAG tools with: sudo apt install openocd

● Clone the class github repo with git clone
https://github.com/nu-ce346/nu-microbit-base.git

● cd into the repo and then run git submodule update --init --recursive
○ This is the magic command that fixes all git submodule issues
○ This will take a hot minute to run. There’s lots of stuff to download

● cd into “software/apps/blink” and run make
○ This should compile the code if everything is working!!
○ You’re done! There’s some bonus stuff below though.

● IF COMPILING DOESN’T WORK:
○ It could be an issue with things not being in your PATH. That would result in it not

finding certain executables you installed, like arm-none-eabi-gcc. Try figuring
out where they installed and add them to your PATH.

○ It could be an issue with a Space character in the file path. None of the
directories including the code may have a space character (or other special
character like plus or colon). They break Makefiles hard. A common issue here is
if your username has a space in it. The solution is to move the directory to
somewhere without any spaces in the folder names.

● If you have a microbit already, you can run make flash and that will actually load the
program onto the board. The LED should start blinking

○ If you’re using a VM, before flashing when you first plug in the Microbit, you’ll
need to go in the VM to “Devices->USB” and check the box next to “Arm BBC
micro:bit” to attach it to the VM

● Also make sure you have some editor installed that you’re happy with. You’ll use
terminal to compile and flash the board, but you don’t have to edit files in terminal if you
don’t want to.

Bonus - WSL Instructions
Courtesy of Joshua Fiest

This is still fairly experimental. You may run into weird issues here. This is not recommended,
but you’re welcome to try it if you want to! Be sure the read the whole thing first, as there are
some updates at the end.

I was able to get the required software to program the Microbit working on my computer using
WSL (Windows Subsystem for Linux). This worked for me on Windows 10 21H1. Here's how I
did it.

1. Install WSL
1. Using the search bar on your computer, go to Turn Windows features on or off,

then click the check boxes to enable Windows Subsystem for Linux and Hyper-V
Platform (If you have Windows Pro, you can also enable Hyper-V Management
Tools to make virtual machines, but you don't have to)

2. In an administrator command prompt, run the command "wsl --update" followed
by "wsl --shutdown"

3. If you already had WSL installed and set up, make sure you are running WSL2
by running the command "wsl -l -v." It should list the installed Linux distros and
their versions, make sure the version is 2.

4. In the Microsoft Store, search for and install Ubuntu
5. If you are running Windows 10, you will also have to install an XServer like

GWSL so that WSL can use a GUI (graphical user interface)
1. To install GWSL, search for it on the Microsoft Store, then install it. Once

it's installed, run it, and click on GWSL Distro Tools -> Display/Audio
Auto-Exporting to configure WSL to use GWSL for graphics.

2. Note: configuring GWSL will prevent WSLg from working properly. If you
upgrade to Windows 11, be sure to revert the changes made by GWSL in
the Linux installation by opening GWSL in Windows and clicking on
GWSL Distro Tools -> More Shells and Options -> ~Clean GWSL
Additions. You can then uninstall GWSL since it isn't needed to get WSL
graphics to work on Windows 11.

2. Install the 64-bit Windows version of OpenOCD
3. Start Ubuntu by typing it in the search bar and set up your account. It may take a couple

of minutes to start the first time.
4. Follow the instructions in the Getting Started lab to set up your Ubuntu installation for

programming the Microbit
5. When programming the Microbit, run the J-link Remote Server that was installed with

J-link on your windows computer. It should give you an IP address that you can type (or
copy and paste) when asked for it while running "make flash." If you are using Windows
10 with GWSL, make sure to start GWSL before running "make flash" or you won't get
the graphical pop-up asking for the IP address.

6. Because Ubuntu doesn't have direct access to your USB port, you will need a Windows
serial console application instead of miniterm. I used the one built into the Arduino IDE,
but PUTTY or something else should work too.

On Windows 11 21H2, there are two very annoying bugs: the J-link remote server may not show
the IP address (you can get it by running "ipconfig" in the Windows command prompt) and if you
hit the "Enter" key on your keyboard in the J-link emulator selection screen from Ubuntu, it will
continue to think Enter is pressed the next time that window opens, which will prevent you from
using it. To get around this, click "Yes" instead of using the Enter key, and if you accidentally hit
the Enter key, you can restart Ubuntu by running "wsl --shutdown" in the Windows command
prompt.

Update 11/9/2021: WSL2 now has compatibility with USB devices. If set up properly, this
removes the need for using a separate Windows serial monitor and the J-link remote server.
https://devblogs.microsoft.com/commandline/connecting-usb-devices-to-wsl/

For some reason, when using the USB port in WSL2, access will be denied unless you run the
command (miniterm or make flash) as sudo.

https://devblogs.microsoft.com/commandline/connecting-usb-devices-to-wsl/
https://devblogs.microsoft.com/commandline/connecting-usb-devices-to-wsl/

