Lecture 15
Nonvolatile Memory &
Energy Management

CE346 — Microprocessor System Design
Branden Ghena — Fall 2022

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia
 Quiz today! Remind me at 4:30
» Microbits
 Every group can have one Microbit to use

« There is a sign-out form in the back of the classroom
« Fill out the name of someone on your group responsible for it

 You can grab a USB cable too if you want one

» I also have some bags of Qwiic cables to grab

Other project hardware

* Project parts
« Come get stuff in my office rather than class

« Also in my office:
 Batteries and battery packs
 Protoboard for soldering stuff
« More Qwiic Cables

« If you need to order more stuff:
« Fill out the form AND send me a campuswire message

Bonus Topics

« We won't have time to talk about these, but I have slides, so I
included them at the end of this lecture

« SD Card protocol

 PPI and task/event chaining

Today’s Goals

» Discuss uses of memory, especially nonvolatile memory, in
embedded systems

* Introduce internal flash peripheral

* Discuss matters of energy on embedded systems
« Where to gain energy?
« How much does the Microbit use?
« How do we write software for very low energy systems?

Outline

« Memory in Computing

* NRF52 Non-Volatile Memory Controller

* Energy Sources

* Microbit Energy Use

 Intermittent Computing

Memory in computing

« Various different memories serve different purposes in computing

* Needs
 Fast, infinite-lifetime memory to keep things like stack memory
« Nonvolatile memory that can be read from

* Desires
* Fast, infinite-lifetime nonvolatile memory

Register technology: SRAM B

+ Static RAM (SRAM) s

1+

At

« Each cell stores a bit in a bi-stable circuit,
typically a six-transistor circuit

» Static — no need for periodic refreshing; .
keeps data while powered

Q

—e

1= HF

Q

« Relatively insensitive to disturbances such as electrical noise
 Energetic particles (alpha particles, cosmic rays) can flip stored bits

» Fastest memory on computer

« Also most expensive and takes up most space per bit
« Typically used for registers and cache memories

=

o

BL

SRAM can be used a permanent memory in a pinch

« Gameboy and Gameboy Color
used batteries to save state

« Gameboy Advanced games
used batteries for an internal
clock

» PSA: your old Gameboy games
have likely lost their save files

Disk drive storage HDD

Platters

Spindle

R/W Head

Actuator Arm

Actuator Axis

Actuator

3.5”

Shock resistant up to 55¢g (operating)
Shock resistant up to 350g (non-operating)

A i

Wl

S 3

Cache

Controller

NAND Flash Memory

Shock resistant up to 15009
(operating and non-operating)

10

Necessity breeds creativity

« Original iPod used a
small disk drive

11

Floating-gate transistors

« Concept behind transistor-based non-volatile memory
- EPROM, EEPROM, and Flash

 High voltage on control gate creates charge on floating gate
« Charge on floating gate activates/deactivates transistor

Control gate

 High voltage degrades
the structure, leading it
to eventually fail after Isolator

enough writes nChanne
Source Drain

Floating gate

12

EPROM

» Erasable programmable read-only memory

 Erasable
« If you shine UV light directly on the IC
« Needed a window to expose the IC

» Programmable
« With high voltage (25-50 volts)

« Typically acted as read-only memory in
circuits

& ®
L. m C1702A
=) RS

—u i
e ()

T s L5
1 - - » "W
: ’ : 1 b
—_— S F———— et— ———— — [E— S e — - -
. = = S " x

13

EEPROM

» Electrically-erasable programable
read-only memory

« Same concept as EPROM, but includes internal
circuitry to allow rewriting under normal
conditions

 Slow and high-power to write
« Has a longer lifetime compared to flash, ~100k writes

| ICTEECE i]

« Can be built into other ICs
« Example: AT90USB162 microcontroller (512 bytes)

{ <
. - g
1
N .
P SHi LT roe —ve -
- - .
+ '’ \ ;
1]
g LS ‘
L | .
' ‘T
e -
el S
Rgte :
B~ {
Ny 1)
[' 1 :
L - I A L
> VAN - ":‘«. . .)
f g - -y |

f e O OO CRODCR) DI

14

Flash

 Similarly based on floating-gate transistors
« But with a different design that allows for faster erase of entire blocks
« More limited lifetime, ~1k-100k writes (10k common for embedded)

« Cannot erase individual bytes, must erase in units of blocks
« Read can happen in units of bytes though

» Heavily used in commercial devices
 Flash drives
« SSDs
« Smartphone storage
 Microcontroller non-volatile storage!

15

More exotic memories

 FRAM and MRAM are both rising protentional Flash replacements
« Non-volatile
« Writable at the byte level
« Very high to infinite write/erase cycles
« Lower energy costs for writing and reading

» The two use unrelated magnetic techniques for data storage

» Starting to appear in microcontrollers
« TI MSP430s have used 16 kB FRAM
 Apollo4 (ARM Cortex-M4F) has 2 MB of MRAM

16

Outline

* Memory in Computing

 NRF52 Non-Volatile Memory Controller

* Energy Sources

* Microbit Energy Use

 Intermittent Computing

Flash memory on the nRF52833

« 512 kB total Flash memory
» 128 pages each 4 kB in size

» Non-Volatile Memory Controller (NVMC) controls access
« Enables writing to flash

[Flash I

 Enables erasing flash S——— ICODE/DCODE
o J 0x0007 FOOO
« Manages status of flash 02| 5
AIm| @
<o | Q Page 3..126
- O
= 0x0000 3000
=
o Page 2 0X0000 2000
1% 2 Page 1 0x0000 1000
Page 0 0x0000 0000

18

Writing to Flash
 Configurable, disabled by default

- Enable with configuration register

* Rules for writing to Flash
« Must write word-aligned 32-bit values
« Can only write 0 values, not ones
 Can only write 2 times before erasing (even if there are still 1 bits)

« Takes 42.5 ps to write a 32-bit word
* 64 MHz clock = 2720 cycles per 32-bit write

19

Erasing Flash

« Lifetime: 10000 erase cycles per page

 Options
 Erase a single page (4 kB): 87.5 ms
 Erase all of flash (512 kB): 173 ms

* CPU is halted if executing code from Flash during the erase
 That’s 5.6 million cycles...
« Code can execute from SRAM instead
 Can also be split into a series of partial erases
« Which must add up to a complete erase time before writing

20

Factory Information Configuration Registers

« Read-only memory

» Chip-specific information and configuration
 Code size
 Unique device ID
 Production IDs
« Temperature conversion functions

21

User Information Configuration Registers

 Additional Flash memory for non-volatile user configurations
« Writable and erasable through NVMC processes described earlier

« 32 words of customer information (128 bytes total)

 Special configurations

» Reset pin
« NFC pin enable/disable
« Debug configuration

22

Break + Question

 Could you run a system entirely within Flash?

 Could you run a system entirely within RAM?

23

Break + Question

 Could you run a system entirely within Flash?
* Yes, but it would go _very_ slowly
» Local variables would be pretty hard to manage

« 87.5 ms of code pause every time you write to a variable...

 Could you run a system entirely within RAM?
 Yes, but code would need to be loaded from somewhere else
* Need initial state that is nonvolatile

« Would run just as fast and be lower energy, actually

24

Outline

* Memory in Computing

* NRF52 Non-Volatile Memory Controller

* Energy Sources

* Microbit Energy Use

 Intermittent Computing

Measuring energy use

» Base equations
« Power = Current * Voltage (Watts)
« Energy = Power * Time (Joules)

» Energy = volts * amps * seconds
 Voltage is usually constant for a system
« Time is how long you are running for / measurement period

 Current changes based on activities being done
« Often energy is presented as a current draw
« Maybe an average current draw
« With Voltage and Time implicit

26

Example current trace during wireless communication

al

| Processin

T, Wake up

Sleeping
2) —————

Current Consumption versus Time during a single Connection Event

27

Wired power through USB

» Provides 5v at up to 500 mA (USB 2.0) or 900 mA (USB 3.0)

« Or power delivery specifications, which can do far more power

« Must be converted to different voltage to use

» Voltage regulator takes in 5v and spits out 3.3v
« Has its own maximum current!

 System is limited by the minimum of USB or regulator power
* Microbit: regulator gives 3.3v at up to 600 mA
« USB 2.5 Watts, Regulator 1.98 Watts = System 1.98 Watts
 This is @ max! Stay 15-30% below regulator limit

28

Thinking about energy

« Batteries often list energy in mA*h (milliamp — hours)
 Coin cell battery: 3v at 220 mAh
« 2x AA battery: 3v at 2000 mAh
 iPhone 11 battery: 3.7v at 3000 mAh

« Also usually limited by regulator
« Sometimes just directly connected to system
« We can run at 3v just fine! (3.7v is no good though)

» \/oltage can vary with charge
 But only a little, right before battery is depleted
« Example: coin cell goes down to ~2.7 volts

29

How are batteries measured?

« Measuring energy remaining is a difficult problem
« Many questions to be handled
« How much did it start with?
« How much energy has been used?
« What type of battery is it?
« Energy is not as constant a quantity as one would hope
 Pulling out lots at once has an overhead penalty

3.6V
+ Coulomb Counter (aka Battery Fuel Gauge) L . | BAT;?,EE_LZ&?STEM o
- Designed for a specific battery “chemistry” = BT g E o
» Monitors charge flowing in each direction EYA f BAL——_
« 12C interface for reading battery state " PR
24512 - RQ —
T =

 Accuracy is not exact, more of an educated guess

30

How are batteries managed?

 Usually a dedicated IC for charging and managing battery packs
« Recharges battery with appropriate amount of current

« Monitors issues of battery health

« Various status monitoring
« Overcharge, undercharge
« Overcurrent
« Overtemperature, undertemperature

« Will go so far as to cut off the system to protect the battery

» Takeaway: complicated problem, approach with caution!
 Best to reuse an existing design, if possible

31

Microbit only uses battery energy in a simple way

« Battery input connects directly to reqgulator
« No protection for battery health
« No battery charging capabilities

 Usually this is fine for simple, low-power systems
« It means that the input voltage can vary though
« Makes the reference voltages for the ADC/Comparator more important

32

Energy harvesting

« Grab energy from the environment and use that!
» Could augment with a battery and use energy to recharge
 Could go entirely batteryless and live on harvested energy alone

» Sources
« Light (outdoor or indoor. most successful)
* Airflow (outdoor or air vents)
« Motion (on human body)
« Temperature differential (difficult in practice)
« RF (very low energy source)

33

Temperature harvesting from hot pipes

» Peltier junctions create a voltage from temperature differential
 Challenge: needs a large differential for more energy

34

Managing harvested energy

 Often uses an IC to pull in energy and provide to system

« Harvested voltage/current are often very small
* Signal in millivolts is pretty common
* Need to accumulate over time to power system

« Fill up a capacitor Volts
» Need particular load for maximum power R, X o
» ICs often implement - . .
Maximum Power Point Tracking (MPPT) SR HE
» Varies load automatically to always o
harvest the most possible energy i M s

35

Outline

* Memory in Computing

* NRF52 Non-Volatile Memory Controller

* Energy Sources

« Microbit Energy Use

 Intermittent Computing

Thinking about energy

 Battery energy
 Coin cell battery: 3v at 220 mAh
« 2x AA battery: 3v at 2000 mAh
 iPhone 11 battery: 3.7v at 3000 mAh

« NRF52833 active current: 5.6 mA (at 3v)

 Coin cell: 40 hours -> ~2 days
« 2X AA: 360 hours -> ~15 days
* iPhone 11: 535 hours -> ~22 days

« SO0 how does any of this work???

37

Sleep mode power draw

@ EnergyTrace™ Technology B Power i R Energy

Microcontroller sleep modes

 Sleep mode
» Processor stops running
« Most peripherals are disabled
« Continues until an interrupt occurs and wakes the microcontroller
« Usually a timer or GPIO input

* NRF52833 sleep mode current: 1.8 pA (GPIO port event only)
 Coin cell: 122222 hours -> ~5000 days -> ~14 years

« Low-power systems shoot for less than 1% duty cycle
 Average current of ~100 pA or less
« Warning: other stuff on the board counts!!
« LEDs are 1-10 mA each... Power is not a concern of the Microbit

39

Microbit current draw (microcontroller)

 Active CPU

« 5.6 mA (executing from Flash)
« 1.8 pA (sleep mode with RAM retention)

» Transmitting RF packet
« 15.5 mA (+8 dBm)

 Other peripherals
« SAADC: 1.37 mA
 Timer: 729 pPA (for any Timer peripheral)
« [2C: 6.6 mA (pull-down resistors when transmitting 0 bit)
 Everything else is handfuls of pA

40

Microbit current draw (non-microcontroller)

« KL27 (JTAG interface microcontroller)
« 2 pA sleep, 8 mA active

Speaker
« 0-27.5 mA (changes with input signal)

Microphone
» 0-120 pA (activated with GPIO pin)

Accelerometer/Magnetometer
« 2-212 A (depends on sensing rates, 200 is magnetometer)

LEDs
« 0-230 mA (can be activated individually)

Everything else
* 0-1 mA (mostly due to pull-up resistors)

41

Max and min current for Microbit

« Maximum current: 280 mA at 3.3 volts (~1 W)

« With everything active
« Well within limits of regulator

* Minimum current
« ~15 mA (always-on power LED)

« If you removed the power LED:
« <100 pA (with everything off)

42

NRF52 sleep mode

* Triggered with assembly instruction
« WFI (Wait For Interrupt) or WFE (Wait For Event)

» Stops processor until woken by interrupt, exception, or event

« On NRF52 automatically disables high frequency clock if unneeded

__attribute_ ((always _inline)) STATIC INLINE __WFI(

(b -

43

Outline

* Memory in Computing

* NRF52 Non-Volatile Memory Controller

* Energy Sources

* Microbit Energy Use

« Intermittent Computing

Reducing energy consumption even further

« If sleep isn’t enough, you can power things off completely
* Transistor can be used to turn off the sensor

Ambient Light

Humidity
0
o = M
= M . .
1 : I:.E

: #— T TR |
1 :r'-j_'l ML — I |
= J11 e
- PR -?T 1 - —— = I T-T
VDG BC i & SC x £ SOL 10F |
- - | . MO S04 o
._ gl [||. T?T = 8 .\:rl "I '1|_||_| :-3.-
SI7021-A20-GM T — T
GND o GND o
F or

45

Energy harvesting can lead to intermittent computing

A

25
3

20
-
\[

| | LN
™ ~
L
] e
| | =
T
I |
o
—i
! I Bubieyd
1 1 yo pasomod
| -+ LN
| |
1 1
> >
(A)obe3joA

l1ajing Abisug

46

Disabling the microcontroller

« Even 2 pA sleep current might be too much for energy harvesting
 Can turn off microcontroller periodically
« Enable it again once VCC returns

 Problem: how do you write software to deal with intermittency?
* Run-to-completion with relatively quick code
« Initialize, sample sensor, send packet, turn off again

« Code checkpointing
« Save state from code and restore when power resumes
» Might be as little as which state the system is in, plus some samples
« Might be as much as saving entire stack state
» Needs low-energy, nonvolatile storage (FRAM or MRAM help!)

47

Programs may not finish

int process() {
count++;
buf[count] = accel();
avg = sum(buf) /count;
transmit (avg) ;

} /
count++

buf[count] = accel()

Power fail o
£
|_

C
Q
e

-

(&)

Q

>
i
v

48

Programs may not finish

int process() {
count++;
buf[count] = accel();
avg = sum(buf) /count;
transmit (avg) ;

} -

count++
buf[count] = accel()
Power fail o

£

|_

C
count++; 2
buf[count] = accel() §
Power fail n

49

Programs may not finish

int process() {
count++;
buf[count] = accel();
avg = sum(buf) /count;
transmit (avg) ;

count++
buf[count]

Power fail

count++;
buf [count]

Power fail

Need to latch execution
state periodically!

} -
accel ()
()
£
|_
C
.0
accel () O
2
L

50

Checkpointing enables progress

int process() {
count++;
buf[count] = accel(); Execute with
avg = sum(buf) /count; .
transmit (avg) ; checkpomts
L /
count++ count++
buf[count] = accel() Checkpoint
Power fail o buf[count] = accel()
£ Power fail
— /\/\/\/\
C
count++; 2
buf[count] = accel() §
Power fail n
v

Need to latch execution
state periodically!

51

Checkpointing enables progress

int process() {
count++;
buf[count] = accel(); Execute With
avg = sum(buf) /count; .
transmit (avg) ; checkpomts
L /
count++ count++
buf[count] = accel() Checkpoint
Power fail o buf[count] = accel()
£ Power fail
= /\/\/\/\
S
count++; = buf[count] = accel()
buf[count] = accel() % avg = sum(buf)/count
Power fail & Checkpoint
transmit-
W
v

Need to latch execution
state periodically!

52

Checkpointing enables progress

int process() {
count++;
buf[count] = accel(); Execute With
avg = sum(buf) /count; .
transmit (avg) ; checkpomts
L /
count++ count++
buf[count] = accel() Checkpoint
Power fail o buf[count] = accel()
£ Power fail
= /\/\/\/\
S
count++; = buf[count] = accel()
buf[count] = accel() 9 avg = sum(buf)/count
Power fail & Checkpoint
transmit-
W
v
) transmit (avg)
Need to latch execution -

state periodically!

53

Checkpointing goals

« Have the compiler automatically insert checkpoints as needed
« Human doesn’t have to think about them when programming

« Limit checkpointing overhead while maximizing forward progress
« Checkpointing will take time to perform, so want to do it rarely
 Rarer checkpoints mean more progress is lost in average outage
« Need to compromise on the two based on available energy

54

Outline

* Memory in Computing

* NRF52 Non-Volatile Memory Controller

* Energy Sources

* Microbit Energy Use

 Intermittent Computing

Outline

 Bonus: SD Cards

SD card references

* ChaN
 Embedc
* http://e

ed systems engineer in Japan (and is amazing)
m-chan.org/docs/mmc/mmc_e.html

* http://e

m-chan.org/fsw/ff/00index e.html

 Various others
« http://users.ece.utexas.edu/~gerstl/ee445m s15/lectures/Lec08.pdf

http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard appnote foust.pdf

https://luckyresistor.me/cat-protector/software/sdcard-2/

http://users.ece.utexas.edu/~valvano/EE345M/SD Physical Layer Spec.pdf

https://github.com/tock/tock/blob/master/capsules/src/sdcard.rs

57

http://elm-chan.org/docs/mmc/mmc_e.html
http://elm-chan.org/fsw/ff/00index_e.html
http://users.ece.utexas.edu/~gerstl/ee445m_s15/lectures/Lec08.pdf
http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf
https://luckyresistor.me/cat-protector/software/sdcard-2/
http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf
https://github.com/tock/tock/blob/master/capsules/src/sdcard.rs

SD cards

« "Secure Digital” Card
 Includes various formfactors
« Flash memory
 Capacities from 8 MB to 128 TB
« 512 byte blocks

 Supports 1-bit SPI interface
 As well as 4-bit SD bus protocol

 Easy to support in embedded systems
« Cheap but high power

32.0mm

21.5mm

|7§_

|/11.0mm\l

15.0mm |

58

Electrical connections for an SD card

« SD Card connections
« SPI SDI, SDO, CS, SCLK
* Plus a switch to enable/disable the SD card and a detect signal

>N R . ‘ ’
I
o238 | 14 e ¥=3 ESR BT | G
H—e - & % DAT
“ ' E—> —=) :i;
— O.) ;‘O GND
| ‘[: ;ACOQ(_l
1
GND

59

Controlling the SD card

 Index: 6-bit value of command being sent

« Argument: 32-bit value that may be arguments to commands
« CRC: checks for bit errors

« Response (after delay)

Command Frame . "NCR R1resp.
! | ! ! | |
sctk —[|INUNIIN I
] | | | | | | | |
Dl |E1 Index Argument CRC 1
| b3 hojh31 | | | hoh6 b | | |
DO JJ 0| Flags

60

SD card SPI commands

ICummand Index [Argument Response | Data |Abbreviation I])ﬁcriptinn

CM DO MNone(() Rl No GO IDLE STATE Software reset.

CMD1 None(D) R1 No |SEND OP COND ||nit:iutf: initialization process.

ACMD41(*1) *2 R1 No |APP SEND OP COND For only SDC. Initiate initialization process.

CMDS *3 R7 No [SEND IF COND |Fcrr only SDC V2. Check voltage range.

CMD9 None(0) RI Yes |[SEND CSD IRead CSD register.

CMD10 None(0) RI Yes |[SEND CID IRead CID register.

CMD12 None(() R1b No [STOP TRANSMISSION Stop to read data.

CMDl6 :?::?EIZ[SI 0] R1 No |SET BLOCKLEN Change R/W block size.

CMD17 Address[31:0] R1 Yes [READ SINGLE BLOCK [Read a block.

CMDI18 Address[31:0] R1 Yes [READ MULTIPLE BLOCK Read multiple blocks.

o et T w | o frrmockcon oo e el o
ACMD23(*1) Eﬁf&g}] R1 No [SET WR BLOCK ERASE COUNT T:?fh":iifjﬁt'ii‘:ifi:f:;iﬁ:;“ 10 pre-crase
CMD24 Address[31:0] R1 Yes [WRITE BLOCK Write a block.

CMD235 Address[31:0] Rl Yes |WRITE MULTIPLE BLOCK Write multiple blocks.

CMDS5(*1) None(0) Rl No |APP CMD |Lcading command of ACMD=n> command.

CMD38 None(0) R3 No [READ OCR

ead Operations Condition Register (OCR). Indicates
upported working voltage range.

Reading from the SD card
» Single block read

DI

DO

CMD17

Cmid
/ Fesp.

L]

Data Packet

 Multiple block read (CMD12 — Stop Transmission)

DI

DO

1-8hyte

CMD18

Cmd
/ Resp.

CMD12

Cmad

H;Hesp.

L]

Data Packet

Data Packet

Busy

Data Packet

62

SD card delays can be significant

 Performing a single byte read

« AlImost 300 ps before the SD card starts sending data
« ~200 ps additional time to send the 512 bytes (20 Mbps data, 8 Mbps total)

DI CMD17 cmd

DO Data Packet

‘4. USBee SX Logic Analyzer i =10 x|

File View Setup Help
10 Sus 50 Sus 84 Sus 118 Sus 162 Sus 180 Sus 220 Sus 254 Sus 288 Sus

|]) i) ~|
LU '
JUCEAECAORERADREEL L LR AR AR R O

I AN
I WM NN
Immnn-

I M n -

PB15

63

Writing to the SD card

* Single block write

= 1hyte
ol B
Dl CMD24 Data Packet
|
DO Cml /l_ Data Busy
Fesp. He-spn.“fI
« Multiple block write
2ibyte J.{Mi
DI CMD25 Data Packet Data Packet Stop {_|
| | Tran
DO cmd A Data Busy Diata Busy Busy
Resp. He-sp-.’f{r Hﬁ-sn-.fr

64

Layering a filesystem on top of an SD card

e FatFs library implements the filesystem Application
agnostic of application and storage medium

FatFs Module

Low level device controls

« Enables the use of file system calls: (D, ATA, FTL, RTC and etc)

* Open, Close, Read, Seek * * -
= [&

« Connects to generic interface for low-level

implementation
o disk_status, disk_init, disk_read, disk_write

Outline

« Bonus: Task/Event Chaining with PPI

Software stops when the processor does, but peripherals continue

* Problem: when the processor is off, no code is running

» Solutions
 Peripherals can wake it up again
 Can probably go for milliseconds to minutes without any actions
» Timer interrupt can wake processor to do things

« Have hardware handle some parts in the background without the
processor’s involvement

- DMA
+ PPI

67

Controlling peripherals while processor sleeps

« DMA (Direct Memory Access)
 Set up a pointer to memory and a length
 Peripheral can load/store memory without processor’s involvement
 Usually use completion interrupt to wake processor

* PPI (Programmable Peripheral Interconnect)
« Any Event can be tied to any Task within the nRF52
* Allows for complicated actions to be chained together

68

NRF52 Tasks and Events

 Tasks are used to perform
some operation
« Often written to by software

 Events change value when
some change in status occurs
 Often used to trigger interrupts

- PPI peripheral can connect
any TASK to any EVENT

Example: Timer peripheral

Register
TASKS_START
TASKS_STOP
TASKS_COUNT
TASKS_CLEAR
TASKS_SHUTDOWM
TASKS_CAPTURE[D]
TASKS_CAPTURE[1]
TASKS_CAPTURE[2]
TASKS_CAPTURE[3]
TASKS_CAPTURE[4]
TASKS_CAPTURE[S]
EVENTS_COMPARE[0]
EVENTS_COMPARE[1]
EVENTS_COMPARE[2]
EVENTS_COMPARE[3]
EVENTS_COMPARE[4]

EVENTS_COMPARE[S]

Dffsat
0000
004
003

10 D0
=010

00
Om0add
ox0dE
0
ox0s0
o054
140
Oxldd
o148
Ox14C
o150
o154

..
Start Tirmer

Stop Tirmer

Increment Timer (Counter mode only)

Clear time
Shut dowmn timer

Capture Timer value to CC[0] register
Capture Timer value to CC[1] register
Capture Timer value to CC[2] register
Capture Timer value to CC[3] register
Captura Timer value to CC[4] register
Capture Timer value to CC[5] register
Compare event on CC[0] match
Compare event on CC[1] match
Compare event on CC[2] match
Compare event on CC[3] match
Compare event on CC[4] match

Compare event on CC[5] match

69

NRF52 PPI peripheral CH[1].EEP

CHIO0].EEP CHI[n].EEP

Event 1

>
Peripheral 1 Event2 . \ Y

Event 1

: Event 2
Peripheral 2 Fveni3

YyYy

» Connects Events to e e e B

Tasks via hardware S N S S Y I e W

......................... n

16MHz

« Each channel gets one

Event pOinter and up to Task1 ! Peripheral 1

two Task pointers -

« Must point to Event/Task LskZ)l peripheral 2

Task3 >

registers >

CH[0].TEP FORK[0].TEP

Example PPI use case

« Automatic high-speed ADC sampling

 Software configures and sleeps

« ADC (buffer and enable)
« Timer (prescaler, compare value, short from compare to clear, and start)

* PPI: When Timer fires (EVENTS_COMPARE[O0]),
« Sample ADC (TASKS_SAMPLE)

« PPI: When ADC buffer full (EVENTS_END),
« Stop Timer (TASKS_STOP)
 Fork: wake processor (via software interrupt from EGU)

71

