
Lecture 14
USB & CAN

CE346 – Microprocessor System Design

Branden Ghena – Fall 2022

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)



Administrivia

• Hardware handout again at the end of class today
• I’ve got a bunch of hardware!

• We’ll hand out Microbits next week Tuesday at the end of class
• Also the date of our last quiz!

• No lab this Friday! Everybody enjoy your extra time!
• And use it to work on projects!

2



Administrivia

• Lecture schedule for the rest of the quarter
• Thursday (11/10) – Wireless Communication

• Tuesday (11/15) – Nonvolatile Memory & Energy Management

• Also the final quiz

• Thursday (11/17) – Microprocessors + Wrapup

• Tuesday (11/22) – Embedded Systems Research

• Tuesday before Thanksgiving

• Tuesday (11/28) & Thursday (12/01) – Project Office Hours

3



Today’s Goals

• Discuss more advanced wired communication protocols
• With a little less detail

• Just give a taste of what they are like

• Think about higher-layer concerns like data routing, interpretation, 
and reliability

4



5

• USB

• CAN

Outline



USB references

• USB in a NutShell
• https://www.beyondlogic.org/usbnutshell

• Other stuff I found useful
• https://www.usbmadesimple.co.uk/

• http://kofa.mmto.arizona.edu/stm32all/blue_pill/usb/an57294.pdf

• https://en.wikipedia.org/wiki/USB

6

https://www.beyondlogic.org/usbnutshell
https://www.usbmadesimple.co.uk/
http://kofa.mmto.arizona.edu/stm32all/blue_pill/usb/an57294.pdf
https://en.wikipedia.org/wiki/USB


Universal Serial Bus (USB)

• Pervasive wired communication protocol
• Universal accurately applies!
• Targets predominantly external devices over a plug/cable

• Good combination of simple and capable
• Base version for simple devices does not require too much

in terms of pins or resources
• More complex versions can transfer a significant amount of data

• These grew organically over time though

• Great support for interoperability
• Generic device profiles that allowed for plug-and-play
• Supported by OS initiatives to include driver software

7



USB is a layered protocol

• USB protocol describes how to:
• Electrically send bits

• Send frames of multiple bytes

• Communicate data between two devices

• Communicate specific application data (through device classes)

• Much more complicated, compared to others
• SPI: only how to electrically send bits

• UART and I2C: how to send frames of bytes

8



Roles and topology

• Hosts and Devices
• USB On-The-Go allows host negotiation

• Added later. Support devices like smartphones

• Host is in charge of communication (“Upstream”)

• Devices provide various capabilities Host can
interact with (“Downstream”)

• Tiered star topology
• Host connects to hubs, which connect to devices
• Up to 127 devices per hub. Up to 5 layers of hubs

9



USB signals

• Four signals
• Vbus (5 volts, can power devices)

• D+

• D-

• Ground

• D+/D- are a differential pair
• Signals are inverses of each other

• Usually, occasionally act separately to signal special conditions

• Increases voltage difference between states (5 - -5 = 10 volts)

• Wires are twisted to avoid interference

10



Synchronizing data

• No clock signal!! How is USB so fast?
• Partially EE magics: better receivers, matched wire impedance
• Partially easier to distinguish signal states
• Also guaranteed transitions, which allow resynchronization

• Transitions are used to denote data (non-return-to-zero inverted)
• With guaranteed transition in within every 8 bits (bit stuffing)
• Allows clocks on the two devices to synchronize

11



USB speeds

• USB 1.0
• Low Speed: 1.5 Mbps

• Not clear if this is used anymore
• Full Speed: 12 Mbps

• Microcontrollers tend to support Full Speed
• We’re focusing on details from it

• USB 2.0
• High Speed: 480 Mbps

• USB 3.0+
• Super Speed: 5-20 Gbps
• Adds multiple parallel data connections

12

• Pull-up resistors allow for 
detection of a plugged device

• Also identify speed



USB interactions

• General transaction format
1. Host sends a Token packet: identifies 

transfer direction and device

2. Host or Device send data depending
on direction

3. Other side acknowledges receipt of 
data

• Like a maxed-out version of the I2C
transaction pattern
• Host always initiates communication

13

Reading data from Device

Writing data to Device



USB token packets

• Packet fields
• Sync field, allows transmitter and receiver clocks to synchronize

• Packet ID, determines what type of packet is being sent

• Token type: Setup device, Read from device, or Write to device

• Address+Endpoint to identify Device

• CRC, (Cyclical Redundancy Check) to detect bit errors

• 5-bit CRC

14



USB data packets

• Packet fields
• Sync field, allows transmitter and receiver clocks to synchronize

• Packet ID, determines what type of packet is being sent

• Data: application data

• Data, up to 1023 bytes (full speed, often capped at 64 for 
microcontrollers)

• CRC, (Cyclical Redundancy Check) to detect bit errors

• 32-bit CRC

15



Cyclic Redundancy Check (CRC)

• Determines if the data received matches the data sent
• CRC value is calculated on original data and appended to message

• CRC value is recalculated on the received data

• Value appended to message and value recalculated MUST match

• Essentially some kind of hash operation
• Turns many bits into some smaller number of bits that are unique-ish

• CRC algorithms are:
• Particularly good at single bit errors AND contiguous bit errors

• Relatively simple to calculate

• Very widely used in communication

16



Interacting with USB devices

• Each Device is given a 
separate address on the bus

• Each Device also has a 
number of Endpoints
• Logical communication channels

• Direct data and guide 
communication patterns

17



USB endpoint types

• Interrupt transfers
• Guaranteed latency, small amounts of data
• Important sensor data (mice and keyboards)
• Polled frequently by Host

• Bulk transfers
• Sporadic large transfers, reliable communication
• General reading/writing of data (flash drives and USB serial)
• Polled by Host whenever there is available bandwidth

• Isochronous transfers
• Guaranteed data rate, unreliable communication
• Continuous data streaming (audio and webcams)
• Polled frequently by host

18



USB control endpoint

• Every USB Device has a special Control endpoint as well

• Used for setting up the USB Device
driver on the Host

• Initializing a Device
• Host sends SETUP transaction requesting

device descriptor
• Host performs IN transaction to read

device descriptor
• Host performs OUT transaction to write

device status

19



USB device descriptors

• Packed version of tree structure describing the device
• Interfaces it provides

• Endpoints associated with each interface

20



Example Microbit

• Interface: Communications, Abstract (modem), CDC
• Endpoint: 3, IN, Interrupt

• Interface: CDC Data, CDC DATA interface
• Endpoint: 1, IN, Bulk
• Endpoint: 2, OUT, Bulk

• Interface: Vendor Specific Class, Subclass, Protocol
• Endpoint: 5, IN, Bulk
• Endpoint: 4, OUT, Bulk

• Interface: Mass Storage, SCSI, MSD interface
• Endpoint: 7, IN, Bulk
• Endpoint: 6, OUT, Bulk

21

SEGGER JTAG 
interface

Virtual serial 
device

USB external 
filesystem



lsusb output

• lsusb

• List USB devices

• Combine with –s flag to select a single device

• Combine with -v flag for verbose mode with more information

22



Minimal virtual serial USB Device

• Virtual Serial Device

• Endpoint 0: Control, IN/OUT
• Respond to IN requests by setting up OUT with a buffer of descriptor data of 

the correct size

• Endpoint 1: Interrupt, IN
• Needed for serial modem controls, just ignore it

• Endpoint 2: Bulk, OUT
• Connect to buffer from _write() (just takes raw characters)

• Endpoint 3: Bulk, IN
• Connect buffer to _read() (just provides raw characters)

23



HID USB Device (Human Interface Device)

• Used for human interaction devices, like keyboard/mouse

• “Report” structure is provided over Interrupt IN endpoint
• Or on demand via Control IN endpoint

24

Example mouse with 
x,y and three buttons



USB summary

• Specification for fast data communication

• Specification for interacting with abstract device types
• Connects correct driver to interpret and send data

• Pros
• Very fast

• Very interoperable

• Cons
• Hardware and software are way more complex than simple protocols like 

UART, SPI, and I2C

• Not very energy efficient

25



nRF52 USBD

• Implements USB Device (not Host)
• Control endpoint

• 14 bulk/interrupt (7 IN, 7 OUT)

• 64-byte transfers

• 2 isochronous (1 IN, 1 OUT)

• 1023-byte transfers

• Full-speed USB
• With 5 volt signals

26



Break + Question

• What are the ramifications of many USB devices sharing a bus?
• Consider: throughput and latency

• What if I really had 127 USB mice on a single USB hub?
• What if it was microphones instead?

27



28

• USB

• CAN

Outline



Controller Area Network (CAN bus)

• Designed for highly reliable interactions within a vehicle

• Multi-master with arbitration
• Similar to I2C

• Mechanism for sending messages with “identifiers”
• Identifies the data in the message, not the device its for

• Lower value identifiers have high priority

• All messages are received by all CAN nodes

• Which can decide at higher levels which identifiers they care about

29



CAN physical connections

• Two differential, wired-AND signal lines
• Transitions are used to transmit bits (non-return-to-zero) with bit-stuffing

• Combines aspects of USB and I2C

• 125 kHz – 5 Mbps speeds

30



CAN packet format

• 11-bit identifier
• Check bits as they are sent to see if you win arbitration

• Up to 8 bytes (64 bits) of data

• CRC for checking

• Acknowledgement
• Like I2C, let the line float and see if another device responds

• If not, explicitly retransmit!

31



CAN message types

• Data frame
• Transmission of data for a certain identifier

• Remote frame
• Requests data transmission of a certain identifier

• Error frame
• Transmitted when an error is detected with the previous message

• Overload frame
• Transmitted by a node that is too busy to respond right now

32



CAN reliability design – detecting errors

• Check for errors everywhere and appropriately handle
• Bit error

• If the value found on the bus differs from the one sent

• Stuff error
• If 6 consecutive bits of the same type are found

• CRC error
• If CRC does not match

• Form error
• Format field has unexpected values

• Acknowledgement error
• No ACK received

• Devices detecting an error broadcast a message signifying it!
• Multiple devices sending the same message works without arbitration loss
• Previous message is then retransmitted

33



CAN reliability design – handling errors

• Each node accepts the possibility that maybe it is the faulty one

• Track errors and successes and change device state
• Passive: limited error signaling and transmissions

• Bus off: does not transmit in any way

• Idea is that the CAN
controller hardware can
be faulty but still detect
it in some cases

34



CAN summary

• Designed for reliable vehicular communication

• Multi-master bus with serial communication

• Pros
• Highly reliable

• Extensible to many devices

• Cons
• Special-purpose design. Whole system has to agree on identifiers

• Relatively slower throughput

35



36

• USB

• CAN

Outline


