Lecture 14
USB & CAN

CE346 — Microprocessor System Design
Branden Ghena — Fall 2022

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia

« Hardware handout again at the end of class today
 I've got a bunch of hardware!

« We'll hand out Microbits next week Tuesday at the end of class
 Also the date of our last quiz!

« No lab this Friday! Everybody enjoy your extra time!
« And use it to work on projects!

Administrivia

* Lecture schedule for the rest of the quarter
* Thursday (11/10) — Wireless Communication

« Tuesday (11/15) — Nonvolatile Memory & Energy Management
* Also the final quiz

» Thursday (11/17) — Microprocessors + Wrapup

» Tuesday (11/22) — Embedded Systems Research
« Tuesday before Thanksgiving

« Tuesday (11/28) & Thursday (12/01) — Project Office Hours

Today’s Goals

* Discuss more advanced wired communication protocols
« With a little less detail
» Just give a taste of what they are like

« Think about higher-layer concerns like data routing, interpretation,
and reliability

Outline

- USB

« CAN

USB references

« USB in a NutShell
« https://www.beyondlogic.org/usbnutshell

» Other stuff I found useful

» https://www.usbmadesimple.co.uk/
« http://kofa.mmto.arizona.edu/stm32all/blue pill/usb/an57294.pdf
« https://en.wikipedia.org/wiki/USB

https://www.beyondlogic.org/usbnutshell
https://www.usbmadesimple.co.uk/
http://kofa.mmto.arizona.edu/stm32all/blue_pill/usb/an57294.pdf
https://en.wikipedia.org/wiki/USB

Universal Serial Bus (USB)

* Pervasive wired communication protocol
 Universal accurately applies!
 Targets predominantly external devices over a plug/cable

» Good combination of simple and capable

» Base version for simple devices does not require too much
in terms of pins or resources

« More complex versions can transfer a significant amount of data
« These grew organically over time though

 Great support for interoperability
« Generic device profiles that allowed for plug-and-play
« Supported by OS initiatives to include driver software

USB is a layered protocol

« USB protocol describes how to:
» Electrically send bits
« Send frames of multiple bytes
« Communicate data between two devices
« Communicate specific application data (through device classes)

« Much more complicated, compared to others
« SPI: only how to electrically send bits
« UART and I2C: how to send frames of bytes

Roles and topology

» Hosts and Devices
« USB On-The-Go allows host negotiation
« Added later. Support devices like smartphones

* Host is in charge of communication (“Upstream®)

» Devices provide various capabilities Host can
interact with ("Downstream”)

» Tiered star topology
« Host connects to hubs, which connect to devices
« Up to 127 devices per hub. Up to 5 layers of hubs

Device

Host

Foothub

Device

Device Device

USB signals

 Four signals
 Vbus (5 volts, can power devices)

Whis] ra Wi
° D+ O+ .;. y/ O+
e D-

D-) D-
 Ground Gmi ﬂ \xi 5

« D+/D- are a differential pair
« Signals are inverses of each other
 Usually, occasionally act separately to signal special conditions
 Increases voltage difference between states (5 - -5 = 10 volts)
« Wires are twisted to avoid interference

10

Synchronizing data

* No clock signal!! How is USB so fast?
» Partially EE magics: better receivers, matched wire impedance
» Partially easier to distinguish signal states
* Also guaranteed transitions, which allow resynchronization

 Transitions are used to denote data (non-return-to-zero inverted)
« With guaranteed transition in within every 8 bits (bit stuffing)
« Allows clocks on the two devices to synchronize

o 11 11 11 1 1 0 0 1 1 1 1
Data To Send

ldle

Stuffed Bit

D111111®11ﬂﬂ1111
NRZI

(With Bit Stuffing) Idle |

11

USB speeds
« USB 1.0

 Low Speed: 1.5 Mbps 5 ,L,;n> =

* Not clear if this is used anymore

3.3V
% FULL SPEED
1.5K

 Full Speed: 12 Mbps S
» Microcontrollers tend to support Full Speed T s
» We're focusing on details from it - J_v;>
- USB 2.0
- High Speed: 480 Mbps Pull-up resistors allow for

detection of a plugged device

« USB 3.0+ . Also identify speed
« Super Speed: 5-20 Gbps
« Adds multiple parallel data connections

12

USB interactions

e General transaction format

1. Host sends a Token packet: identifies
transfer direction and device

2. Host or Device send data depending
on direction

3. Other side acknowledges receipt of
data

 Like @ maxed-out version of the I12C
transaction pattern

« Host a/ways initiates communication

Reading data from Device

~ C
DIIE|IR
DIIP||C
R 5
TOKEN

PAYLOAD

DATA

DATAIN

Writing data to Device

-“CO0

VOO0 »r
m

a0O0VO

SPr-4>r0

PAYLOAD
DATA

DH=0200

TOKEN

DATAOUT

x0»

HIS

HIS

13

USB token packets

» Packet fields
 Sync field, allows transmitter and receiver clocks to synchronize

 Packet ID, determines what type of packet is being sent
« Token type: Setup device, Read from device, or Write to device

« Address+Endpoint to identify Device

* CRC, (Cyclical Redundancy Check) to detect bit errors
« 5-bit CRC

14

USB data packets

» Packet fields
 Sync field, allows transmitter and receiver clocks to synchronize

 Packet ID, determines what type of packet is being sent
« Data: application data

« Data, up to 1023 bytes (full speed, often capped at 64 for
microcontrollers)

* CRC, (Cyclical Redundancy Check) to detect bit errors
« 32-bit CRC

15

Cyclic Redundancy Check (CRC)

« Determines if the data received matches the data sent
« CRC value is calculated on original data and appended to message
« CRC value is recalculated on the received data
 Value appended to message and value recalculated MUST match

« Essentially some kind of hash operation
« Turns many bits into some smaller number of bits that are unique-ish

« CRC algorithms are:
» Particularly good at single bit errors AND contiguous bit errors
* Relatively simple to calculate
» Very widely used in communication

16

Interacting with USB devices

Teebmiee T T T TTT
[ﬂd-:Ir][Enu:Ip-:-int][Directi-:u:-]— | EFD In -
» Each Device is given a % S m | vrruneten
separate address on the bus | —
| _ o o ____._. —
P ol e]
« Each Device also has a | croow —»
number of Endpoints S P Jo—
- Logical communication channels : _ errowt |—w
- Direct data and guide | LU
communication patterns | EP. Out [—#

USB endpoint types

* Interrupt transfers
« Guaranteed latency, small amounts of data
« Important sensor data (mice and keyboards)
 Polled frequently by Host

 Bulk transfers
 Sporadic large transfers, reliable communication
» General reading/writing of data (flash drives and USB serial)
 Polled by Host whenever there is available bandwidth

 Isochronous transfers
« Guaranteed data rate, unreliable communication
« Continuous data streaming (audio and webcams)
* Polled frequently by host

18

USB control endpoint

 Every USB Device has a special Control endpoint as well

» Used for setting up the USB Device
driver on the Host

» Initializing a Device
« Host sends SETUP transaction requesting
device descriptor

« Host performs IN transaction to read
device descriptor

« Host performs OUT transaction to write
device status

SETUP Stage

-l =R

Aggor

-l =

DA

Sk BD

8 Byias
SETUP
Data

m = 330

DATA Stage (optional)

AQQ e

TmToOEM

O

Payload
Data

AQQ e

TOoOEM

O

apkr=pr0 Rl

Payload
Data

o == 000 o == 030

STATUS Stage

- =0
el ==

ToOEmMm

im0 0

=3 = =0

c

R
[
.1
[

g

[=o> | [=o>

19

USB device descriptors

 Packed version of tree structure describing the device
« Interfaces it provides
 Endpoints associated with each interface

Device Descriptor

Configuration Descriptor Configuration Descriptor

Example Microbit

« Interface: Communications, Abstract (modem), CDC
« Endpoint: 3, IN, Interrupt

 Interface: CDC Data, CDC DATA interface
« Endpoint: 1, IN, Bulk
« Endpoint: 2, OUT, Bulk

» Interface: Vendor Specific Class, Subclass, Protocol
« Endpoint: 5, IN, Bulk
« Endpoint: 4, OUT, Bulk

« Interface: Mass Storage, SCSI, MSD interface
« Endpoint: 7, IN, Bulk
« Endpoint: 6, OUT, Bulk

\

J

Virtual serial
device

SEGGER JTAG
interface

USB external
filesystem

21

Isusb output

* | susb
 List USB devices

« Combine with —s flag to select a single device
« Combine with -v flag for verbose mode with more information

22

Minimal virtual serial USB Device

* Virtual Serial Device

» Endpoint 0: Control, IN/JOUT

« Respond to IN requests by setting up OUT with a buffer of descriptor data of
the correct size

« Endpoint 1: Interrupt, IN
» Needed for serial modem controls, just ignore it

» Endpoint 2: Bulk, OUT
« Connect to buffer from write () (just takes raw characters)

« Endpoint 3: Bulk, IN
 Connect buffer to read () (just provides raw characters)

23

HID USB Device (Human Interface Device)

« Used for human interaction devices, like keyboard/mouse

Control pipe

(default)
HID b g HID
Class Device Interrupt pipe Class Driver
-

« "Report” structure is provided over Interrupt IN endpoint
» Or on demand via Control IN endpoint

13029282726 2524 2322212019181716 1514 13121110948 62432110

F_l;:.qga_ FTeE543210 TE543210 FES54 3210 rE543210 EXample mouse W|th
Datault Valua 0
Button 3 E!'ﬂel 2:¥ E'g.-'tel‘I:H Byte 0: I|=tepnr’r D X,y and three buttons
Button 2
Button 1

24

USB summary

« Specification for fast data communication

» Specification for interacting with abstract device types
« Connects correct driver to interpret and send data

* Pros
 Very fast
* Very interoperable

* Cons

« Hardware and software are way more complex than simple protocols like
UART, SPI, and 12C

« Not very energy efficient

25

nRF52 USBD

« Implements USB Device (not Host)

 Control endpoint
14 bulk/interrupt (7 IN, 7 OUT)

» 64-byte transfers e m— R W S

USERWRRDY #— | 9Sners tor

« 2 isochronous (1 IN, 1 OUT)

- 1023-byte transfers s —> J
* Full-speed USB . | |
» With 5 volt signals | e 2 || T o
EasyDNA -
Data RAM e e emamat I

Break + Question

« What are the ramifications of many USB devices sharing a bus?
 Consider: throughput and latency

« What if I really had 127 USB mice on a single USB hub?
« What if it was microphones instead?

27

Outline

- USB

- CAN

Controller Area Network (CAN bus)

» Designed for highly reliable interactions within a vehicle

e Multi-master with arbitration
e Similar to I12C

« Mechanism for sending messages with “identifiers”
- Identifies the data in the message, not the device its for
« Lower value identifiers have high priority
* All messages are received by all CAN nodes
« Which can decide at higher levels which identifiers they care about

29

CAN physical connections

 Two differential, wired-AND signal lines
» Transitions are used to transmit bits (non-return-to-zero) with bit-stuffing
« Combines aspects of USB and I12C
« 125 kHz — 5 Mbps speeds

/ Max. 40 m

CAN High

0000
N

Max. 0,5 m Main loop Transceiver

Transceiver

CAN
Transceiver

30

CAN packet format

0 11-Bit Identifier

e e
o

DLC

0.. .8 Bytes Data

CRC

ACK

m o m

« 11-bit identifier

» Check bits as they are sent to see if you win arbitration
« Up to 8 bytes (64 bits) of data

« CRC for checking
« Acknowledgement

« Like I2C, let the line float and see if another device responds

« If not, explicitly retransmit!

CAN message types

e Data frame
e Transmission of data for a certain identifier

« Remote frame
« Requests data transmission of a certain identifier

* Error frame
» Transmitted when an error is detected with the previous message

» Overload frame
» Transmitted by a node that is too busy to respond right now

32

CAN reliability design — detecting errors

« Check for errors everywhere and appropriately handle
» Bit error
 If the value found on the bus differs from the one sent

Stuff error
« If 6 consecutive bits of the same type are found

CRC error
« If CRC does not match

Form error
« Format field has unexpected values

Acknowledgement error
« No ACK received

 Devices detecting an error broadcast a message signifying it!
« Multiple devices sending the same message works without arbitration loss
« Previous message is then retransmitted

33

CAN reliability design — handling errors

« Each node accepts the possibility that maybe it is the faulty one

» Track errors and successes and change device state
» Passive: limited error signaling and transmissions
 Bus off: does not transmit in any way

TRANSMIT ERROR COUNT > 128 or
° Idea IS that the CAN RECEIVE ERROR COUNT > 128 pae;;?\:e

controller hardware can .
error
active

be faulty but still detect
It In some cases

TRANSMIT ERROR COUNT = 256

TRANSMIT ERROR COUNT =0 and
RECEIVE ERROR COUNT =0 and ...

34

CAN summary

 Designed for reliable vehicular communication
« Multi-master bus with serial communication

* Pros
 Highly reliable
« Extensible to many devices

 Cons

 Special-purpose design. Whole system has to agree on identifiers
« Relatively slower throughput

35

Outline

- USB

« CAN

