
Lecture 11
Wired Communication:

UART

CE346 – Microprocessor System Design

Branden Ghena – Fall 2022

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Alanson Sample (Michigan)

Today’s Goals

• Explore tradeoffs in wired communication
• Signals, Speed, Timing, Topology

• Describe wired serial communication protocol: UART

• Discuss nRF52 implementation of UART

2

3

• Wired Communication

• UART

• nRF52 UARTE

Outline

Purpose of communication

• Goal: convey digital information between two devices

• Simple solution
• Digital I/O pin – 1-bit of information

• Complex solution
• Send multiple bits (arbitrarily many)

• While also minimizing

• Time, Energy, Pins, Errors, etc.

4

Wired versus wireless communication

• Wired
• Send digital signals across one or more wires

• Advantages: Reliable, Low energy, Often simpler topology

• Disadvantages: Physically limiting

• Wireless
• Send digital signals across another medium (usually RF)

• Advantages: Physically flexible,

• Disadvantages: Unreliable, High energy, Usually broadcast

5

Wired versus wireless communication

• Wired
• Send digital signals across one or more wires

• Advantages: Reliable, Low energy, Often simpler topology

• Disadvantages: Physically limiting

• This week + next two lectures: UART, I2C, SPI, USB

• Wireless
• Send digital signals across another medium (usually RF)

• Advantages: Physically flexible,

• Disadvantages: Unreliable, High energy, Usually broadcast

• Next week: Wireless Communication

6

Tradeoffs in Wired Communication

• Number of signals

• Communication speed

• Controlling timing

• Network topology

7

Let’s talk about each of these
in the coming slides

Tradeoff: number of signals

• Serial interface
• Single wire

• Transmit data as a “series” of bits
separated by time

• Parallel interface
• Multiple wires

• How many depends on the system

• Transmit data across multiple
“parallel” wires simultaneously

• Still separate by time for more data
than wires

8

Transmitter

Transmitter

Serial versus parallel

• Serial
• Cheaper to use less wires

• Slower to transmit data

• Examples

• RS-232, UART, I2C, USB (2.0)

• Parallel
• More expensive for more pins and

wires

• Faster to transmit data

• Examples

• Internal buses, PCI, USB (3.0)

9

Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed

• Controlling timing

• Network topology

10

Tradeoff: communication speed

• Inherently limited by the speed of light
• Speed of electricity 50-99% of that

• 29 cm (11.4 in) = 1 nanosecond

• Totally relevant for Gbps speeds within computers

• Also limited by interference
• Faster signals are harder to distinguish

• More susceptible to interference (matters less for wired comms)

• Limited by whether other device can keep up
• Might need some flow-control signaling to slow down when not ready

11

Example communication speed

• Internal, low-energy communication
• UART, 1-1000 kbps
• I2C, 100-400 kbps
• SPI, 1-100 Mbps

• External (mostly serial) communication
• USB, 1-10000 Mbps
• Ethernet, 1-1000 Mbps
• HDMI, 4-48 Gbps

• Internal parallel communication
• PCI, 8-32 Gbps
• RAM, 12-25 Gbps

12

Note: Speeds are always
measured in bit per second

Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed
• 1000 bps to 10000000000 bps

• Controlling timing

• Network topology

13

Tradeoff: controlling timing

• Synchronous communication
• Clock signal sent along with data
• Data is captured at edge of clock signal

(rising or falling)

• Advantage: send signals very fast
• Disadvantage: extra pin and wire

• Asynchronous communication
• Agree upon timing in advance and read

data at that rate

• Advantage: no need for clock signal
• Disadvantage: clock synchronization

14

DATA

CLK

Transmitter Receiver

b0 b1 b2 b3 b4 b5 b7b6

D0

D1

D2

D3

D4

D5

D6

D7

CLK

Transmitter Receiver

b0 b0 b0 b0 b0b0

b1

b2

b3

b4

b5

b6

b7

Compromise: combining signals and clocks

• There is a method of recovering the clock from the signal
• Either the clock is directly encoded in the signal

• Or the signal will have mandatory high/low changes to synchronize

15

https://en.wikipedia.org/wiki/Clock_recovery
https://en.wikipedia.org/wiki/Self-clocking_signal

https://en.wikipedia.org/wiki/Clock_recovery
https://en.wikipedia.org/wiki/Self-clocking_signal

Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed
• 1000 bps to 10000000000 bps

• Controlling timing
• Synchronous versus Asynchronous

• Network topology

16

How to connect: point-to-point networks

• How do we connect computers in a network?
• This is a question of “network topology”

• Simple option: just connect them directly

• Problem: what if I find a third computer?

17

How to connect: bus networks

• Connect everything to one wire in parallel
• Actually a “multidrop bus”

• Scales pretty well to many computers

• Problem: which computer gets to transmit when?
• Simultaneous transmissions conflict

• Need a scheme for “arbitration”, deciding who transmits when

18

How to connect: ring networks

• Connect everything with point-to-point connections
• Connect the last computer back to the first computer

• Also known as Daisy-Chain (without the last connection back to the start)

• Problem: what if a computer stops sending?

19

How to connect: star networks

• Connect to a hub with point-to-point connections
• Hub connects all computers

• Hub is a simple computer with one job: transfer communications between
computers

• Hopefully more reliable than any of the computers

20

Microcontrollers are often hubs of star networks

• Connect to multiple different sensors

• Sometimes a few sensors are connected on a bus

21

Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed
• 1000 bps to 10000000000 bps

• Controlling timing
• Synchronous versus Asynchronous

• Network topology
• Point-to-Point, Bus, Ring, Star

22

Break + Administriva

• Place parts orders ASAP
• I’ll do the next bunch of purchasing tomorrow

• The sooner you get your stuff, the sooner you can get started

• I should be able to bring the first batch of stuff on Thursday

• After Lab 6 is completed, I’ll provide each group with a Microbit
that they can hang onto for the rest of class
• Work in lab or at home, or wherever

• Quiz today!

23

24

• Wired Communication

• UART

• nRF52 UARTE

Outline

UART Overview

• Universal Asynchronous Receiver Transmitter
• Serial communication between two devices
• Two wires: transmit and receive
• Simple to implement and very common on microcontrollers

• Tradeoff choices: Serial, Low speed, Asynchronous, Point-to-Point

• Most frequently used to send text data between devices
• Microcontroller printf() output
• GPS to microcontroller
• Radio AT commands to/from microcontroller

25

UART data frame

• Signal is high by default

• Goes low to trigger Start

• Send each data bit (high=1, low=0), plus optionally parity bit

• Goes high to trigger Stop

26

UART example, transmitting 0x32 and 0x3C

27

UART baud rates

• Baud rate is a measure
of “symbols per second”
• Typically 1 bit per

symbol, but not always

• UART is 1 bit per symbol,
but 8 data bits per 10/11
symbols

• Any baud rate is
possible
• But there are a handful

of normal configurations

• 115200 and 9600 are
most common

• We use 38400

28

UART sampling rate

• How do we make asynchronous communication work?
• Both sides must agree on the baud rate

• Listen for start bit

• Conceptually:

• Only need to sample 9-10 more times at baud rate spacing

• Short enough that clocks should not diverge too much

• Realistically:

• Sample 8 or 16 times per bit

• Determine boundaries between bits

• Select most common value
between boundaries

29

Serial communication - DB9 connector

• Common pattern in cables
• Ground (must be common), often VCC, Tx, RX
• Plus extra wires for signaling metadata

31

• Signal voltage not compatible
with modern microcontrollers!
• Up to +/- 15 volts

UART: chip-to-chip communication

• Usually implemented as a two-wire interface
• TXD: Transmits data

• RXD: Receives data

• Optionally two additional pins for flow control

• No clock signal! Asynchronous

• Note: TX connects to RX
(you’ll always get this
wrong on the first try)

32

Detecting errors with parity

• Choose one configuration for all UART messages
• Even parity: total number of “1” bits in data is even

• Odd parity: total number of “1” bits in data is odd

• Parity bit: set to 1 or 0 to guarantee the parity configuration
• If message doesn’t match parity configuration at receiver,

there was a bit error (single error detecting)

• Example: Data = 10101011 (five “1” bits)
• Odd parity: set parity bit to zero

• Even parity: set parity bit to one

33

UART error conditions

• Parity failure
• Bit error when receiving data

• Overrun
• New data arrived and overwrote buffer in peripheral before it was read

• Framing
• Did not see Stop Bit when expected (should be guaranteed “1”)

• Break condition
• Signal is low for entire message (Zero data plus Framing Error)
• Often used as a signal between devices

34

UART flow control

• How do we ensure that the other device is ready for the message?
• Add two pins for “hardware flow control”

• Ready To Send (RTS) output, signals that you want to send data

• Clear to Send (CTS) input, signals that other device is ready to receive

• Software flow control is possible
too
• Send special byte that means pause

or resume transmissions

• Only works with ASCII though
(otherwise, byte might be valid data)

35

UART to USB bridge

• FTDI makes the most common chip to do this (FT232)

• Microbit uses a microcontroller to do this!
• KL27Z connects to USB

• Also connects to nRF52833 via UART and JTAG

• ttyACM0 is a “virtual serial device” on top of USB, miniterm is a serial console

36

UART Pros and Cons

• Pros
• Only uses two wires

• No clock signal is necessary

• Can do error detection with parity bit

• Cons
• Data frame is limited to 8 bits out of 10 bits (20% signaling overhead)

• Doesn’t support multiple device interactions (point-to-point only)

• Relatively slow to ensure proper reception

37

Break + Longer Decoding Example

38

1. How many bytes are transmitted here?

Break + Longer Decoding Example

39

S
T
A
R
T

S
T
O

P

S
T
A
R
T

S
T
O

P

S
T
A
R
T

S
T
O

P

1. How many bytes are transmitted here? 3 bytes

Break + Longer Decoding Example

40

S
T
A
R
T

S
T
A
R
T

S
T
A
R
T

S
T
O

P

S
T
O

P

S
T
O

P

1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte?
• Remember: least significant bit is first

Break + Longer Decoding Example

41

0 0 0 1 0 0 1 0

S
T
A
R
T

S
T
A
R
T

S
T
A
R
T

S
T
O

P

S
T
O

P

S
T
O

P

1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte? 0b01001000 -> 0x48
• Remember: least significant bit is first

Break + Longer Decoding Example

42

0 0 0 1 0 0 1 0

S
T
A
R
T

S
T
A
R
T

S
T
A
R
T

S
T
O

P

S
T
O

P

S
T
O

P

1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte? 0b01001000 -> 0x48
• Remember: least significant bit is first

3. What message is sent here?

Break + Longer Decoding Example

43

0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0

S
T
A
R
T

S
T
A
R
T

S
T
A
R
T

S
T
O

P

S
T
O

P

S
T
O

P

1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte? 0b01001000 -> 0x48
• Remember: least significant bit is first

3. What message is sent here? 0x48, 0x49, 0x21
In ASCII: HI!

Real-world signals don’t have the guide

44

• Assume the smallest step you ever see is the bit length
• Check that the start/stop bits are where you expect

• Calculate the values

• Or use a logic analyzer that can decode it for you

45

• Wired Communication

• UART

• nRF52 UARTE

Outline

Which UART peripheral?

• Two peripherals in the nRF52 documentation

• UART peripheral
• Standard UART without DMA
• Deprecated (as in, they suggest not using it)

• UARTE peripheral
• Standard UART with DMA

• Their registers overlap
• They are two different ways of using the same hardware
• Only one at a time can be “active”

46

UARTE peripheral

47

UARTE peripheral

• Pins: RX, TX, (optional) CTS and RTS

48

UARTE peripheral

• Receive connects directly to buffer in RAM

49

UARTE peripheral

• Transmit connects directly from buffer in RAM (not flash!)

50

UARTE baudrates

• Choose from
standard,
preconfigured
buad rates

• That values are
32-bit numbers
implies other
baudrates are
possible

51

Typical UART configurations

• Baud rate 115200

• No parity

• No flow control

• Probably covers ~70% of UART communication
• Baud rate 9600, No parity, No flow control covers another 15%

52

UARTE driver code

• Pretty straightforward to implement driver for this
• Definitely could have been a lab

• DMA is exactly what you want
• Pointer to buffer of data (in RAM)

• Length

• Go!

• More interesting: how does printf() use the UART?

53

boards/microbit_v2/microbit_retarget.c

• printf()
eventually calls
_write()with
formatted data

• Converts
stdio calls
into UART TX
and RX

• Library just
sets DMA and
starts Tx

54

55

• Wired Communication

• UART

• nRF52 UARTE

Outline

