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Today’s Goals

• Explore tradeoffs in wired communication
• Signals, Speed, Timing, Topology

• Describe wired serial communication protocol: UART

• Discuss nRF52 implementation of UART
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Purpose of communication

• Goal: convey digital information between two devices

• Simple solution
• Digital I/O pin – 1-bit of information

• Complex solution
• Send multiple bits (arbitrarily many)

• While also minimizing

• Time, Energy, Pins, Errors, etc.
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Wired versus wireless communication

• Wired
• Send digital signals across one or more wires

• Advantages: Reliable, Low energy, Often simpler topology

• Disadvantages: Physically limiting

• Wireless
• Send digital signals across another medium (usually RF)

• Advantages: Physically flexible, 

• Disadvantages: Unreliable, High energy, Usually broadcast
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Wired versus wireless communication

• Wired
• Send digital signals across one or more wires

• Advantages: Reliable, Low energy, Often simpler topology

• Disadvantages: Physically limiting

• This week + next two lectures: UART, I2C, SPI, USB

• Wireless
• Send digital signals across another medium (usually RF)

• Advantages: Physically flexible, 

• Disadvantages: Unreliable, High energy, Usually broadcast

• Next week: Wireless Communication
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Tradeoffs in Wired Communication

• Number of signals

• Communication speed

• Controlling timing

• Network topology
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Let’s talk about each of these 
in the coming slides



Tradeoff: number of signals

• Serial interface
• Single wire

• Transmit data as a “series” of bits 
separated by time

• Parallel interface
• Multiple wires

• How many depends on the system

• Transmit data across multiple 
“parallel” wires simultaneously

• Still separate by time for more data 
than wires
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Serial versus parallel

• Serial
• Cheaper to use less wires

• Slower to transmit data

• Examples

• RS-232, UART, I2C, USB (2.0)

• Parallel
• More expensive for more pins and 

wires

• Faster to transmit data

• Examples

• Internal buses, PCI, USB (3.0)
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Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed

• Controlling timing

• Network topology
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Tradeoff: communication speed

• Inherently limited by the speed of light
• Speed of electricity 50-99% of that

• 29 cm (11.4 in) = 1 nanosecond

• Totally relevant for Gbps speeds within computers

• Also limited by interference
• Faster signals are harder to distinguish

• More susceptible to interference (matters less for wired comms)

• Limited by whether other device can keep up
• Might need some flow-control signaling to slow down when not ready
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Example communication speed

• Internal, low-energy communication
• UART, 1-1000 kbps
• I2C, 100-400 kbps
• SPI, 1-100 Mbps

• External (mostly serial) communication
• USB, 1-10000 Mbps
• Ethernet, 1-1000 Mbps
• HDMI, 4-48 Gbps

• Internal parallel communication
• PCI, 8-32 Gbps
• RAM, 12-25 Gbps
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Note: Speeds are always 
measured in bit per second



Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed
• 1000 bps to 10000000000 bps

• Controlling timing

• Network topology
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Tradeoff: controlling timing

• Synchronous communication
• Clock signal sent along with data
• Data is captured at edge of clock signal 

(rising or falling)

• Advantage: send signals very fast
• Disadvantage: extra pin and wire

• Asynchronous communication
• Agree upon timing in advance and read 

data at that rate

• Advantage: no need for clock signal
• Disadvantage: clock synchronization
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Compromise: combining signals and clocks

• There is a method of recovering the clock from the signal
• Either the clock is directly encoded in the signal

• Or the signal will have mandatory high/low changes to synchronize
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https://en.wikipedia.org/wiki/Clock_recovery
https://en.wikipedia.org/wiki/Self-clocking_signal

https://en.wikipedia.org/wiki/Clock_recovery
https://en.wikipedia.org/wiki/Self-clocking_signal


Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed
• 1000 bps to 10000000000 bps

• Controlling timing
• Synchronous versus Asynchronous

• Network topology
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How to connect: point-to-point networks

• How do we connect computers in a network?
• This is a question of “network topology”

• Simple option: just connect them directly

• Problem: what if I find a third computer?
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How to connect: bus networks

• Connect everything to one wire in parallel
• Actually a “multidrop bus”

• Scales pretty well to many computers

• Problem: which computer gets to transmit when?
• Simultaneous transmissions conflict

• Need a scheme for “arbitration”, deciding who transmits when
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How to connect: ring networks

• Connect everything with point-to-point connections
• Connect the last computer back to the first computer

• Also known as Daisy-Chain (without the last connection back to the start)

• Problem: what if a computer stops sending?
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How to connect: star networks

• Connect to a hub with point-to-point connections
• Hub connects all computers

• Hub is a simple computer with one job: transfer communications between 
computers

• Hopefully more reliable than any of the computers
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Microcontrollers are often hubs of star networks

• Connect to multiple different sensors

• Sometimes a few sensors are connected on a bus
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Tradeoffs in Wired Communication

• Number of signals
• Parallel versus Serial

• Communication speed
• 1000 bps to 10000000000 bps

• Controlling timing
• Synchronous versus Asynchronous

• Network topology
• Point-to-Point, Bus, Ring, Star
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Break + Administriva

• Place parts orders ASAP
• I’ll do the next bunch of purchasing tomorrow

• The sooner you get your stuff, the sooner you can get started

• I should be able to bring the first batch of stuff on Thursday

• After Lab 6 is completed, I’ll provide each group with a Microbit
that they can hang onto for the rest of class
• Work in lab or at home, or wherever

• Quiz today!
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UART Overview

• Universal Asynchronous Receiver Transmitter
• Serial communication between two devices
• Two wires: transmit and receive
• Simple to implement and very common on microcontrollers

• Tradeoff choices: Serial, Low speed, Asynchronous, Point-to-Point

• Most frequently used to send text data between devices
• Microcontroller printf() output
• GPS to microcontroller
• Radio AT commands to/from microcontroller
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UART data frame

• Signal is high by default

• Goes low to trigger Start

• Send each data bit (high=1, low=0), plus optionally parity bit

• Goes high to trigger Stop
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UART example, transmitting 0x32 and 0x3C
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UART baud rates

• Baud rate is a measure 
of “symbols per second”
• Typically 1 bit per 

symbol, but not always

• UART is 1 bit per symbol,
but 8 data bits per 10/11 
symbols

• Any baud rate is 
possible
• But there are a handful 

of normal configurations

• 115200 and 9600 are 
most common

• We use 38400
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UART sampling rate

• How do we make asynchronous communication work?
• Both sides must agree on the baud rate

• Listen for start bit

• Conceptually:

• Only need to sample 9-10 more times at baud rate spacing

• Short enough that clocks should not diverge too much

• Realistically:

• Sample 8 or 16 times per bit

• Determine boundaries between bits

• Select most common value
between boundaries
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Serial communication - DB9 connector

• Common pattern in cables
• Ground (must be common), often VCC, Tx, RX
• Plus extra wires for signaling metadata

31

• Signal voltage not compatible 
with modern microcontrollers!
• Up to +/- 15 volts



UART: chip-to-chip communication

• Usually implemented as a two-wire interface
• TXD: Transmits data

• RXD: Receives data

• Optionally two additional pins for flow control

• No clock signal! Asynchronous

• Note: TX connects to RX
(you’ll always get this
wrong on the first try)
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Detecting errors with parity

• Choose one configuration for all UART messages
• Even parity: total number of “1” bits in data is even

• Odd parity: total number of “1” bits in data is odd

• Parity bit: set to 1 or 0 to guarantee the parity configuration
• If message doesn’t match parity configuration at receiver,

there was a bit error (single error detecting)

• Example: Data = 10101011  (five “1” bits)
• Odd parity: set parity bit to zero

• Even parity: set parity bit to one
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UART error conditions

• Parity failure
• Bit error when receiving data

• Overrun
• New data arrived and overwrote buffer in peripheral before it was read

• Framing
• Did not see Stop Bit when expected (should be guaranteed “1”)

• Break condition
• Signal is low for entire message (Zero data plus Framing Error)
• Often used as a signal between devices
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UART flow control

• How do we ensure that the other device is ready for the message?
• Add two pins for “hardware flow control”

• Ready To Send (RTS) output, signals that you want to send data

• Clear to Send (CTS) input, signals that other device is ready to receive

• Software flow control is possible
too
• Send special byte that means pause

or resume transmissions

• Only works with ASCII though
(otherwise, byte might be valid data)
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UART to USB bridge

• FTDI makes the most common chip to do this (FT232)

• Microbit uses a microcontroller to do this!
• KL27Z connects to USB

• Also connects to nRF52833 via UART and JTAG

• ttyACM0 is a “virtual serial device” on top of USB, miniterm is a serial console
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UART Pros and Cons

• Pros
• Only uses two wires

• No clock signal is necessary

• Can do error detection with parity bit

• Cons
• Data frame is limited to 8 bits out of 10 bits (20% signaling overhead)

• Doesn’t support multiple device interactions (point-to-point only)

• Relatively slow to ensure proper reception
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Break + Longer Decoding Example
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1. How many bytes are transmitted here?



Break + Longer Decoding Example
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1. How many bytes are transmitted here? 3 bytes



Break + Longer Decoding Example
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1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte?
• Remember: least significant bit is first



Break + Longer Decoding Example
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1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte? 0b01001000 -> 0x48
• Remember: least significant bit is first



Break + Longer Decoding Example
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1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte? 0b01001000 -> 0x48
• Remember: least significant bit is first

3. What message is sent here?



Break + Longer Decoding Example
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0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0
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1. How many bytes are transmitted here? 3 bytes

2. What is the data for the first byte? 0b01001000 -> 0x48
• Remember: least significant bit is first

3. What message is sent here? 0x48, 0x49, 0x21
In ASCII: HI!



Real-world signals don’t have the guide
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• Assume the smallest step you ever see is the bit length
• Check that the start/stop bits are where you expect

• Calculate the values

• Or use a logic analyzer that can decode it for you
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Which UART peripheral?

• Two peripherals in the nRF52 documentation

• UART peripheral
• Standard UART without DMA
• Deprecated (as in, they suggest not using it)

• UARTE peripheral
• Standard UART with DMA

• Their registers overlap
• They are two different ways of using the same hardware
• Only one at a time can be “active”
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UARTE peripheral
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UARTE peripheral

• Pins: RX, TX, (optional) CTS and RTS
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UARTE peripheral

• Receive connects directly to buffer in RAM
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UARTE peripheral

• Transmit connects directly from buffer in RAM (not flash!)
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UARTE baudrates

• Choose from 
standard, 
preconfigured 
buad rates

• That values are 
32-bit numbers 
implies other 
baudrates are 
possible
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Typical UART configurations

• Baud rate 115200

• No parity

• No flow control

• Probably covers ~70% of UART communication
• Baud rate 9600, No parity, No flow control covers another 15%

52



UARTE driver code

• Pretty straightforward to implement driver for this
• Definitely could have been a lab

• DMA is exactly what you want
• Pointer to buffer of data (in RAM)

• Length

• Go!

• More interesting: how does printf() use the UART?
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boards/microbit_v2/microbit_retarget.c

• printf() 
eventually calls 
_write()with 
formatted data

• Converts 
stdio calls 
into UART TX 
and RX

• Library just 
sets DMA and 
starts Tx
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