
Lecture 10
Analog Output

CE346 – Microprocessor System Design

Branden Ghena – Fall 2022

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)



Administrivia

• Everyone should have gotten feedback by now
• If you haven’t, either check spam folder or I somehow forgot about you

• Design presentations all next week!
• Happy to discuss things before then either after class or on Campuswire

• Drop deadline is Friday next week
• I’m not worried about anyone in CE346

• But if you’re worried, I’m happy to talk about it.

2



Today’s Goals

• Discuss one last sensor: capacitive touch

• Explore common methods for generating analog signals

• Understand the role of Digital-to-Analog converters

• Discuss the concepts of Pulse-Width Modulation
• And the nRF52 implementation of it

3



4

• Capacitive Touch Sensing

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline



Capacitive Touch Sensor

• Pull-up resistors connected to metal pads
• Also connected to GPIO pin

• Acts as a capacitor connected to ground

5



The touch pad recharges on its own

• If you drive the GPIO pin attached to it low, touchpad clears low

• If you make the GPIO pin an input (high impedance)
• The touchpad gets pulled high, which takes some amount of time

6

The more 
capacitance the 

longer this takes!

Low Capacitance High Capacitance



Capacitive touch sensing method

1. Drive GPIO pin low
• Connects the pad to ground

2. Set GPIO pin as input and enable low-to-high interrupt
• Gets an interrupt when the pad finally becomes high on its own
• Use a timer to determine time until interrupt

• ~70 μs with no finger, <= milliseconds with finger
• Needs to timeout after a few milliseconds and declare “touched”

3. Repeat periodically (a few times a second is probably good enough)

Sudden large increase in rise time ⇨ someone is touching!
• Finger acts as a large capacitor

7



Capacitive touch works on any metal surface

• Idea: Microbit door handle sensor

• Connect a wire and a pull-up resistor to a metal door handle to 
sense when someone is touching it!
• Timing will be very different from capacitive pad, but should be repeatable 

and distinguishable from human touch

8



9

• Capacitive Touch Sensing

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline



Digital-to-Analog Converters

• Generates an analog voltage

• DACs are conceptually the 
inverse of ADCs
• Number of bits of resolution 

choose analog step size

• Frequency determines step 
duration

10



High resolution versus high frequency

• What role does each play in a DAC?
Which is more important?

• High resolution can accurately represent a voltage

• High frequency can accurately represent a changing voltage

• In practice:
• Need high enough resolution, then as high of frequency as possible

11



Infinite resolution is not sufficient

• DAC frequency corresponds 
to representable signal 
changes
• Rise and fall times

• Even an infinite resolution 
DAC cannot represent a 
signal if it is not fast 
enough

12



Low-pass filter smooths output

• Low-pass filter delays changes in 
voltage and smoothly transitions 
between them
• Low-frequency signals stay

• High-frequency are smoothed

• Greatly improves quality of output 
but must be tuned to the desired 
signal frequency
• Usually not included in 

microcontroller

13



Resistor string DAC

• Use series of voltage dividers 
and switches to set output 
voltage
• Generates equally spaced 

voltages that can be selected 
between

• Needs output buffer to provide 
stable current

• Takes a lot of resistors
• And resistors take a lot of silicon

14



Resistor string example

• 𝑽𝒐𝒖𝒕 = 𝒄𝒐𝒅𝒆 ∗
𝑽𝒓𝒆𝒇

𝟐𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏

• Input code is 101
• Selects switches such 

that 5/8*Vref is 
connected to output

15



Break + DAC applications

• What do you use an analog output for?

16



Break + DAC applications

• What do you use an analog output for?

• Audio output

• But it needs to be high quality (resolution and speed)

• Motors

• But only with a controller that actually drives them with enough current

• LED brightness

• Not Much

• And these last two can be done more easily with PWM

17



DACs are not in all microcontrollers

• Not rare, but not ubiquitous either
• Every microcontroller has GPIO

• Just about every microcontroller has an ADC

• Some microcontrollers have DACs
(the nRF52833 does not!)

• Reasons
• Hardware is complicated (but we could fit it if we wanted)

• Use cases are uncommon (and might need very high quality)

• Many devices can be controller digitally

• Pulse-Width Modulation (PWM) can emulate usably analog signals

18



19

• Capacitive Touch Sensing

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline



Pulse-Width Modulation

• Much easier to control high or low 
than an analog output

• Idea: modify how long a signal is 
high within some switching 
frequency, a.k.a duty cycle

• On 50% of the time for half voltage

• On 10% of the time for tenth voltage

• Duty cycle, not frequency!

20



PWM to Analog Signal example

• PWM period should be much faster than the desired analog signal
• PWM duty cycle represents the voltage along the way

• Multiple duty cycles per output point makes it more accurate

22



Low-pass approach works here too

• Importantly, many devices are 
inherent low-pass filters

• Heaters, Motors
• Low-pass by physical design

• I.e., they can’t start/stop quickly

• LEDs are not
• But our eyes are!

23



Controlling PWM

• Vary duty cycle by selecting
transition points
• Time when set
• Time when unset

• Repeat every cycle
• Period much faster than signal if possible
• Makes analog approximation more accurate

• The faster you run it, the less likely it
matters that it is not actually analog

• Example: LED switching frequency

• Duty cycle could vary cycle-by-cycle if it must

24



PWM alignment

• Can select alignment 
as well
• Equivalent to a phase 

delay

• Centering produces 
cleaner analog output
• Less harmonics

• Not relevant for most 
devices

25



Every microcontroller can do PWM

• Not every microcontroller has a PWM peripheral

• But every microcontroller has timers and digital outputs

• All that is needed is a GPIO and a Timer (or two)
• Timer determines when to turn GPIO on and off

• Often can be automated in hardware rather than use interrupt handler

26



PWM is a method of encoding data

• PWM is a pulse-width modulated signal

• There are many other ways to “modulate” a signal to transmit data
• Amplitude, Frequency, and Phase are common

• Layers data on top of an existing “carrier signal”

• Used especially for high-speed communication
• Wired (cable lines) or Wireless (basically everything)

27



PWM applications

• Servos
• Duty cycle chooses angle or rotation speed

• Motor controllers
• Duty cycle chooses current and therefore speed

• LED brightness
• And “breathing” effect

• Audio
• Can sound okay if frequency is high enough

28



Break + Open Question

• Imagine you want to represent the
following signal with PWM
• What should the PWM period be?

• What kinds of duty cycle values would you use? (3.3v is 100%)

29



Break + Open Question

• Imagine you want to represent the
following signal with PWM
• What should the PWM period be?

• Signal period is ~10 μs

• PWM period should be at least 2x that
• 10x faster seems like a good start

• Then if we want multiple PWM outputs per sample, that’s ~20-40x faster

• What kinds of duty cycle values would you use? (3.3v is 100%)

• 2/3.3 = 61% duty cycle max

• 0/3.3 = 0% duty cycle min

30



31

• Capacitive Touch Sensing

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline



nRF52 PWM – theory of operation

• A clock continuously adds to a counter value
• (just like the Timer peripheral does)

• When the counter value reaches COMP[n], the GPIO value on 
channel n changes from high to low (or vice-versa)

• When the counter value reaches COUNTERTOP, the GPIO value on 
channel n changes from low to high (or vice-versa)
• AND the counter value resets to zero

32



nRF52 PWM peripheral

• Uses internal timer to 
create PWM output on 
up to 4 pins
• 4 peripherals, so up to 

16 pins total

• Loads compare values 
via DMA to rapidly 
vary “analog” signal

33



PWM example

• Counter increments up 
to COUNTERTOP, resets 
and continues

• Period/Frequency
• Chosen by COUNTEROP 

and timer PRESCALER

34
Time

Counter 
Value

One PWM period



PWM example

• Counter increments up 
to COUNTERTOP, resets 
and continues

• Duty Cycle
• COMP0 chooses first 

toggle point for OUT[0]

• Second toggle point is 
when the timer resets

35
Time

Counter 
Value

(right-aligned) 𝐶𝑂𝑀𝑃 =
𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 − (𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 ∗ 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒)

(left-aligned) 𝐶𝑂𝑀𝑃 =
𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 ∗ 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒

One PWM period



Center-aligned PWM

• Up-and-down mode enables 
center-aligned PWM

• Duty Cycle
• Comp triggers toggle on rise

• Comp triggers toggle again on 
fall

𝐶𝑂𝑀𝑃 =

𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 − (𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 ∗ 0.5 ∗ 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒)

36



Trading speed and accuracy

• How do you get the most accurate PWM 
values?
• Select the largest COUNTERTOP possible

• Most possible COMP values
• Up to 15-bit resolution (32767 max)

• How do you get the fastest PWM frequency?
• Select the smallest COUNTERTOP possible
• PRESCALER also affects this

• 16 MHz – 128 kHz (8 possible values)

• Fastest PRESCALER + largest COUNTERTOP 
equals 488 Hz
• Likely need to sacrifice resolution for speed

37



DMA with PWM

• Every N periods it loads a new configuration from RAM
• N combined with PRESCALER and COUNTERTOP chooses “analog signal” period

• Configuration sets COMP values for each output channel
• Also sets polarity (starting value: low or high)

• Application of memory loads to channels is configurable

38



Waveform mode

• Also has the option to change COUNTERTOP every N PWM periods

• Allows arbitrary waveforms to be created
• Frequency changes every period

• Duty cycle can also change each period

• We don’t normally need this, as a
constant frequency with changing
duty cycle should be fine

39



Other configurations

• How many times the entire DMA sequence repeats
• 0 to large number, infinite with a configuration in SHORTS

• How long to delay between repeating sequence cycles
• Repeats last PWM configuration

• Two DMA sequence configurations (0 and 1)
• Can modify one while the other is playing

• Allows continuous signal (for example, music)

40



nRF SDK PWM driver

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrfx__pwm.html

• Initialize PWM with base configuration
• Output pins, Clock frequency, COUNTERTOP, DMA grouping mode

• Handler for events from peripheral

• nrfx_pwm_simple_playback(instance, sequence, count, flags)
• Instance: pointer to global variable with registers

• Sequence: struct containing sequence to be played (see next slide)

• Count: number of times (1 or more) to repeat sequence

• Flags: stop peripheral when done, loop forever, various events

41

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrfx__pwm.html


Sequence struct

• values: pointer to array of uint16_t values (union of types)

• length: length of array

• repeats: number of times to repeat each individual value
• Sets period for “analog value” changing

42



Example, playing a note

• Pick PWM frequency to match note frequency
• Combination of PRESCALER, COUNTERTOP, and repeats

• 440 Hz for the note A

• PRESCALER 1 MHz, COUNTERTOP 2273 -> 440 Hz

• Set duty cycle of PWM to control volume
• 50% duty cycle -> COMP value of 1137

• Set sequence with an array of length 1, content is {1137} (polarity 0)

• Repeats 0, end_delay 0

• Set playback_count to 1 and flags to NRFX_PWM_FLAG_LOOP

43



Controlling LED Matrix brightness

• Option 1: PWM peripheral
• Need to use multiple PWM peripherals to get 5 pins

• Could only allow brightness to be controlled for the entire matrix

• Then use a single PWM output to control the row

• When timer fires, change which row pin is used for PWM

• Option 2: do it manually (for individual control)
• Can’t determine duty cycle when the row is turned on

• Each row already at 100 Hz, duty cycling would be slower and visible

• Instead add 5 new one-shot app timers, one for each column

• Fire at some time while the row is active (within that 2 ms)

• Use to toggle column LED back to off

44



45

• Capacitive Touch Sensing

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline


