
Lecture 07
Driver Design

CE346 – Microprocessor System Design

Branden Ghena – Fall 2022

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administriva

• Project Proposals due Thursday!
• A few are in so far and they look great and I’m super excited!!!!!

• My goal is get you feedback by early next week

• Otherwise, class keeps going as usual
• Still have four more lab sessions

• Still have three more quizzes

• Lots more content to cover

2

Today’s Goals

• Deep-dive into driver design options

• Explore another aspect of device driver design
• Non-blocking vs Blocking interfaces

• Discuss how interrupts interact with these
• Event-loop as a partial alternative

• Consider how an LED matrix driver could be constructed

3

4

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• Continuous Operation

Outline

How should we write driver software?

• There are various knobs available to us from hardware
• Polling, Interrupts, DMA

• There are also various software interface design
• Synchronous

• Asynchronous

• Callback

• Event-driven model

5

Synchronous device drivers

• Synchronous functions
• Function call issues a command

• Does not return until action is complete and result is ready

• Example: most functions we’re used to
• sqrt() for example

• printf() also usually works this way (with some exceptions)

• Arduino interfaces are usually like this!
• Easy to get started with and understand

6

Downside of synchronous code: the waiting

• How long will it take until the function returns?
• Immediately, seconds, minutes?

• What if there’s an error and the device never responds?
• More advanced interface could include a timeout option

• Synchronous designs require other synchronous designs
• We can build synchronous interfaces from asynchronous ones

• But we can’t go the other way

7

Asynchronous drivers

• Goal: let the hardware run on its own and have the code get back
to it later

• Challenge: programmers don’t think that way

• Other challenge: how do we “get back to it later”?
• Callbacks

• Event-driven model

8

Callbacks

• Callbacks reuse a similar idea to interrupts
• When the event occurs, call this function

• General pattern
• Call driver function with one argument being a function pointer

• Driver sets up interaction and returns immediately

• Later the event happens and the driver calls the function pointer

9

Function pointers in C

• Harder than in Javascript or C++. Can’t define anonymous function inline
• Instead create a pointer to an existing function in your code

void myfun(int a) {

// do something here

}

void main() {

void (*fun_ptr)(int) = &myfun;

fun_ptr(10); // dereference happens automatically

}

10

& is actually unnecessary.
With or without are identical.

Callback functions

• uint32_t timer_start(
uint32_t microseconds,

void (*callback_fn)(void*),

void* context

);

• timer_start(duration, my_timer_handler, context);

• “Context” is often provided as well (void*)
• Ability for caller to pass an argument for the callback function

• Often a pointer to a position in a structure or a shared variable to modify

11

Callbacks usually run in an interrupt mode

• If the interrupt handler calls the callback, the callback will be
within that same interrupt mode

• Be careful which variables you modify!!
• Could lead to concurrency issues if you modify a public structure

• Starts to get pretty annoying
• Embedded systems deal with concurrency issues just like OS

12

Building synchronous code out of callbacks

• Callback handlers can be used to build synchronous code

void myfun(void* context) {

(boolean)context = true; // context is the flag pointer

}

void timer_start_blocking(duration) {

volatile boolean flag = false;

timer_start(duration, &myfun, &flag);

while (!flag) { }

}

13

Temp driver example

nu-microbit-base/software/apps/temp_driver/

• Some necessary functions
• NVIC_EnableIRQ(irq); // TEMP_IRQn is for the Temperature Sensor

• NVIC_SetPriority(irq, priority)

14

https://github.com/nu-ce346/nu-microbit-base/blob/main/software/apps/temp_driver

15

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• Continuous Operation

Outline

Interrupts are frustrating

• We do not always want to block on every call

• We also do not want to deal with concurrency issues

• An alternative: one main event loop
• Polls necessary sensors

• Iterates through state machine and determine actions

• Runs at a certain frequency

16

Event loop

• Rather than polling a single driver, poll all of them
• Each time through the loop check all relevant inputs

• Respond to events that are necessary

• Sleep until ready to start again

while (1) {

time start = get_time();

boolean result = check_timer();

if (result) { check_gps(); }

adjust_throttle();

delay_ms(1000 – (get_time() – start));

}

17

Downsides of event loop design

• Timeliness can be a problem

• How long between the timer being ready and the GPS being
checked in this example?
• Maximum of 1 second plus the time spent checking other stuff

18

while (1) {

time start = get_time();

boolean result = check_timer();

if (result) { check_gps(); }

adjust_throttle();

delay_ms(1000 – (get_time() – start));

}

Top-half / Bottom-half handler design

• Top half
• Interrupt handler

• Immediately continues next transaction

• Or signals for top half to continue (often with shared variable)

• Bottom half
• Performs logic to actually process and respond to the event

• Run in a non-interrupt context when the scheduler is ready for it

• Usually safe to run it even while interrupts could be occurring

19

Temperature event-loop example

nu-microbit-base/software/apps/temp_event_loop/

• Some necessary functions
• NVIC_EnableIRQ(irq); // TEMP_IRQn is for the Temperature Sensor

• NVIC_SetPriority(irq, priority)

20

https://github.com/nu-ce346/nu-microbit-base/tree/main/software/apps/temp_event_loop

21

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• Continuous Operation

Outline

Continuous operation

• For some sensors/actuators they might be continuous updating in
the background

• For those, we only need one init_and_start function and a read
function
• Continuous sensors are always ready with the most recent sample

• Continuous actuators will always update to the new command as soon as
possible

• They might skip a command if you give it multiple very quickly

22

Continuously updating temperature

• Temperature driver design
1. In the interrupt handler, copy over the value

2. Start the next event, which will automatically re-trigger the interrupt

• No more is_ready() function, data is always ready with the most up-to-
date value

• This would mean a TON of interrupts
• Probably want to combine with a timer to run it more slowly

23

LED Matrix design

• This is a good example of a continuous operation actuator

• General driver design
• Split operation between a Model and a View

(Model-View-Controller design)

• Model contains what you want the state of the LEDs to be

• Only updates when the user calls a function

• Updates immediately (non-blocking)

• View contains the code to take the model and display it on the LEDs

• Continuously updates the LED states with a timer

24

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

LEDs on the Microbit

• Use two GPIO pins to control each
LED
• Row high as VDD

• Column low as Ground

• Remember, connections only exist
where there are dots

25

Controlling the LED matrix

• We can light up all the LEDs at
once:
• Set all rows to High

• Clear all columns to Low

26

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LOW

LOW

LOW

LOW

Controlling the LED matrix

• But now how do we turn off
the right middle LED?

27

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LOW

LOW

LOW

LOW

Can we control by row?

• But now how do we turn off
the right middle LED?

• What if we clear the row to
Low?
• Messes up the entire row

28

HIGH

HIGH

LOW

HIGH

HIGH

LOW

LOW

LOW

LOW

LOW

Can we control by column?

• But now how do we turn off
the right middle LED?

• What if we set the column to
High?
• Messes up the entire column

• We don’t actually have
arbitrary control over the
whole thing at once

29

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LOW

LOW

LOW

HIGH

Persistence of vision

• The solution here is to abuse how human eyes work

• Eyes can’t detect changes in light that are going faster than a
certain speed
• Or if they do at all, it’s interpreted as slightly dimmer light

• Any given LED should be above ~100 Hz to keep humans from noticing
the flicker

30

Persistance of vision on an LED matrix

31

One column at a time

• What if we instead control a
single column at a time?

• First column, all LEDs on

32

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

HIGH

HIGH

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Same for second column
through fourth column

33

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

HIGH

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Same for second column
through fourth column

34

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Same for second column
through fourth column

35

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

HIGH

One column at a time

• What if we instead control a
single column at a time?

• Last column we only turn on
some of the LEDs

• As long as we keep cycling
through columns fast enough,
the whole thing becomes a
display

36

HIGH

HIGH

LOW

HIGH

HIGH

HIGH

HIGH

HIGH

HIGH

LOW

LED matrix full design

• Requires GPIO and a Timer

• When the Timer fires
• Change which column you are displaying

• Update the row pins based on this new column

• Read row data from a 5x5 array that models what the screen should
show

• When the user wants to change the display
• Update that 5x5 array in memory

• It’ll start getting drawn on the screen the next time the Timer fires

37

38

• Driver Interfaces (Blocking and Non-Blocking)

• Event-driven Model

• Continuous Operation

Outline

