
Lecture 13
Wired Communication:

SPI and I2C

CE346 – Microprocessor System Design

Branden Ghena – Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Sparkfun

Administrivia

• Make sure to fill out the post-lab quiz for Lab 5

• Make sure to send in purchase requests ASAP

2

Today’s Goals

• Discuss additional wired communication protocols: SPI and I2C

• Understand tradeoffs in design
• UART, SPI, and I2C are each useful for different scenarios

3

4

• SPI

• I2C

Outline

UART Pros and Cons

• Pros
• Only uses two wires

• No clock signal is necessary

• Can do error detection with parity bit

• Cons
• Data frame is limited to 8 bits (20% signaling overhead)

• Doesn’t support multiple device interactions (point-to-point only)

• Relatively slow to ensure proper reception

• Let’s get rid of all the cons (by sacrificing on all the pros)

5

Synchronous UART

• USART
• Synchronous/Asynchronous

• Just add a clock line

• Common peripheral in many microcontrollers to allow adaptable
communication
• Could build various protocols (like SPI) on top of it

• Still point-to-point limited in this form

6

DATA

CLK

Transmitter Receiver

b0 b1 b2 b3 b4 b5 b7b6

Synchronous serial communication with a single device

7

Microcontroller

Data Out
Clock

Device 2

Device 1

Device 3

Data In
Clock

Want bi-directional communication, so three wires

8

Microcontroller

Data Out
Data In

Clock

Device 2

Device 1

Device 3

Data In
Data Out
Clock

Wire signals to all devices to form a bus

9

Microcontroller

Data Out
Data In

Clock

Data In
Data Out
Clock

Device 2

Device 1

Device 3

Data In
Data Out
Clock

Data In
Data Out
Clock

Communicating on a bus

How do you distinguish which device you are talking to?

• Address for each device

• GPIO pin for each device

10

Communicating on a bus

How do you distinguish which device you are talking to?

1. Address for each device
• Devices must always listen and then discard messages that aren’t for them

• Need to define packet format so it’s clear where the address is

• Need a method for addressing devices

2. GPIO pin for each device
• Signal which device is being communicated with

• Only activates communication on transition of “select” line

11

Separate chip select line for each device

12

Microcontroller

Data Out
Data In

Clock
(2) Chip Select
(1) Chip Select
(3) Chip Select

Device 2

Device 1

Device 3

Data In
Data Out
Clock
Chip Select

Data In
Data Out
Clock
Chip Select

Data In
Data Out
Clock
Chip Select

Serial Peripheral Interface (SPI)

• Serial, synchronous, bus
communication protocol

• Single controller with
multiple peripherals
• Within a circuit board

• High-speed
communication
• Multiple Mbps

13

Microcontroller

Serial Data Out
Serial Data In

Serial Clock

Chip Select

Chip Select

Chip Select

Device 2

Device 1

Device 3

Serial Data In
Serial Data Out
Serial Clock

Chip Select

Serial Data In
Serial Data Out
Serial Clock

Chip Select

Serial Data In
Serial Data Out
Serial Clock

Chip Select

A note on outdated notation

• Master/Slave paradigm
• Master is the “Computer” and is in charge of interaction

• Slave is the “Device” and has little control over interaction parameters

• Really common notation in EE side of the world.

• Not intended to be harmful, but also literally inconsiderate.

• Field is changing for the better. It’s going to take some time.
• Controller/Peripheral

• Central/Peripheral

• Device/Peripheral

• Master/Minion

• Primary/Secondary

14

SPI naming schemes

• Historical SPI Naming
• MISO – Master In Slave Out
• MOSI – Master Out Slave In
• SS – Slave Select

• Revised SPI Naming
• CIPO – Controller In Peripheral Out

• SDI – Serial Data In (for devices which could act as either role)

• COPI – Controller Out Peripheral In
• SDO – Serial Data Out (for devices which could act as either role)

• CS – Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi_signal_names

15

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names
https://www.sparkfun.com/spi_signal_names

SPI wiring

• 3+N wires for N peripherals

• COPI – Controller Out Peripheral In

• CIPO – Controller In Peripheral Out

• SCK – Serial ClocK

• CS – Chip Select
• Active low signal

• Longer names remove ambiguity
about communication
• COPI to COPI

• CIPO to CIPO

16

Microcontroller

COPI
CIPO
SCK

CS

CS

CS

Device 2

Device 1

Device 3

COPI
CIPO
SCK

CS

COPI
CIPO
SCK

CS

COPI
CIPO
SCK

CS

SPI timing diagram

• CS goes low to start
transaction and
high to end

• Data is sent
synchronously with
clock signals

• Capable of full-
duplex transfers
• Both directions at

the same time

17

SCK

COPI

CIPO

CS

SPI communication

• Transactions usually
in multiples of bytes
(as many as
needed)

• Bytes are sent LSb
first

• No need for framing
bits (start/stop)
• CS handles that

18

SPI configurations

• CPOL – is the clock default low or default high

• CPHA – is data read on first edge or second edge

• Peripherals tell you what their configuration is

19

20

SPI data rate

• No particular requirements
• Speed can go as fast as your clock and line capacitance can handle

• Datasheet for devices will specify their speeds
• Sort of standards (less so than UART, for example)

• 700 kbps

• 3.4 Mbps

• 10 Mbps

21

Daisy-chaining SPI

• SPI can also be formed into a ring bus

• Doesn’t save on pins, but does reduce wires…
• At the cost of reliability and speed

• Fairly rare in practice

22

Bi-directional communication

• Controller starts/stops SPI
transfers

• Peripherals often add
interrupt outputs to signal
controller that an event has
occurred
• More pins, yay!

23

Use Cases

• High-speed peripherals
• Microphone, Accelerometer, External ADC

• External memory
• Memory chips

• SD cards

• All SD cards support a SPI communication mode

• QSPI – Quad SPI (four COPI lines for more throughput)

• Often used for communication with external memory

24

SPI Pros and Cons

• Pros
• Faster throughput (and no overhead)

• No restrictions on data frame

• No addressing requirements or word size assumptions

• Full duplex transfers

• Cons
• Many pins: 3+N (for N peripherals)

• CS line scales linearly (other signals are a bus)

• Controller must initiate all transfers

• Not designed for multi-controller scenarios

25

Break + relevant xkcd

26https://xkcd.com/927/

27

• SPI

• I2C

Outline

Choosing different tradeoffs from other wired communication

• Things we like from SPI
• Communication over a bus

• Synchronous communication

• Things we want from new protocol
• Fewer I/O pins

• Use a single data line for bi-directional communication

• Needs addressing and more specified data frame

• Multiple controllers sharing the bus

• Needs a bus contention solution

28

Bus contention could short a shared bus

• Want to enable multiple controllers

• Problem
• What if they each try to transmit different data?

• At some point, there will be a short-circuit

29

Disconnected I/O pins enable shared communication

• I/O pins often have three states
• High

• Low

• Disconnected
(also known as High-Impedance/High-Z)

• We can use this third state to enable
communication over a shared line
• Low or Disconnected

• Wired-AND

• 1 if they are all disconnected

• 0 if any are low

30

ANDing

Inter-Integrated Circuit (I2C)

• Two-wire, synchronous, bus communication
• Ubiquitous in the embedded world

• De-facto standard for sensors

• Invented and patented by Phillips (now NXP)
• Patent expired in 2004

• Also known as Two-Wire Interface (TWI)
• Occasionally as System Management Bus (SMBus or SMB) but that’s

actually a related but separate thing

31

I2C overview

• SDA – Serial Data

• SCL – Serial Clock
• Usually 100 kHz or 400 kHz

• Communication is a
shared bus between all
controller(s) and
peripheral(s)

• Pull-up resistors for open-
drain communication

32

• SDA and SCL are open-drain
• 1 – high-impedance, let line

float high

• 0 – active drive, pull line low

33

• Pull-up resistor to provide high
signal
• Low enough resistance that current

can flow in a reasonable amount of
time

• Common value: 4.7 kΩ

Open drain bus communication

I2C transactions

• Default
• Both lines float high (pull-up resistor)

• Start condition
• Drive SDA low while SCL is still high

34

I2C transactions

• First byte is chip address + R/W indication
• Address: 7-bit value that needs to be different for each participant

• R/W: 1 for read, 0 for write

• Values are sent MSb first (reverse of other protocols 😱)

35

I2C transactions

• Acknowledgement from peripheral follows each byte
• Controller lets line float high

• Peripheral drives line low to signal receipt of message

36

I2C transactions

• Data frame(s) follow
• Sent as entire bytes, plus and ACK
• As many as needed before Stop condition

• Stop condition
• SDA goes high while SCL is high (normally data only changes when clock is low)

37

Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and
the other wants a high bit?

38

Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and
the other wants a high bit?
• Low bit wins! (so smaller address or data)

• Each controller constantly checks whether SDA matches the
voltage level it expects
• Stops attempting to transmit if it ever does not

• (Only actually needs to check high signals)

39

Repeated start conditions

• Repeated start conditions
allow the bus to be used
again while arbitration was
won

• Trigger another Start
condition without triggering
Stop condition
• Send address again

• Frequently used for write
then read pattern
• Write which value you want
• Then repeated start and read

40

Clock stretching

• Clock is an open-drain
line too
• Either device could

keep it low

• Transaction can be
briefly paused by
holding SCL low

41

ready

Real-world I2C transactions

42

Each I2C device on a bus mush have a different address

• Shared addresses would cause both to
respond

• ICs often have one or more address pin(s)
used to select bit(s) of address
• 0 pins: only one may be on bus
• 1 pin: two may be on bus
• 2 pins: four may be on bus

• If no address pins (or not enough), need
an I2C address translator chip
• Translates addresses for one or more

peripheral chips

43

A0 is low: address 1001010x
A0 is high: address 1001011x

Sparkfun Qwiic connect system

• System for wiring multiple prototyping boards together

• Four-pin connector
• VCC (3.3 volts)

• Ground

• SDA

• SCL

• Daisy-chains through boards
• Actually connects to chips in parallel as a bus

44

https://www.sparkfun.com/qwiic

https://www.sparkfun.com/qwiic

System Management Bus (SMBus)

• Related communication specification
• A little more strict in places, but generally interoperable

• Adds ability to broadcast or unicast messages
• Generic addresses for Contoller and various peripherals (Battery)

• Adds an open-drain shared interrupt signal
• High-impedance or pull low, just like SDA and SCL

• Allows any device to alert a controller

• Controller has to probe bus to determine which device wants attention

45

I2C use cases

• Various sensors
• Usually low to medium speed

• Even relatively high speed stuff often has I2C for convenience

• Accelerometers and microphones

• Often with intelligent filtering built in

• Communication between microcontrollers
• Either can act as the Controller when necessary

• Commonly exists internally within smartphones and laptops too
• Light sensors, Temperature sensors, etc.

46

I2C Pros and Cons

• Pros
• Wiring is simple

• Only uses two pins

• Very widely supported

• Cons
• Relatively slow communication rate

• Speed versus power use tradeoff (due to pull-down resistor)

• Open collector makes debugging difficult

47

48

• SPI

• I2C

Outline

