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Administrivia

• Make sure to fill out the post-lab quiz for Lab 5

• Make sure to send in purchase requests ASAP
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Today’s Goals

• Discuss additional wired communication protocols: SPI and I2C

• Understand tradeoffs in design
• UART, SPI, and I2C are each useful for different scenarios
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UART Pros and Cons

• Pros
• Only uses two wires

• No clock signal is necessary

• Can do error detection with parity bit

• Cons
• Data frame is limited to 8 bits (20% signaling overhead)

• Doesn’t support multiple device interactions (point-to-point only)

• Relatively slow to ensure proper reception

• Let’s get rid of all the cons (by sacrificing on all the pros)
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Synchronous UART

• USART
• Synchronous/Asynchronous

• Just add a clock line

• Common peripheral in many microcontrollers to allow adaptable 
communication
• Could build various protocols (like SPI) on top of it

• Still point-to-point limited in this form
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Synchronous serial communication with a single device
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Want bi-directional communication, so three wires
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Wire signals to all devices to form a bus
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Communicating on a bus

How do you distinguish which device you are talking to?

• Address for each device

• GPIO pin for each device
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Communicating on a bus

How do you distinguish which device you are talking to?

1. Address for each device
• Devices must always listen and then discard messages that aren’t for them

• Need to define packet format so it’s clear where the address is

• Need a method for addressing devices

2. GPIO pin for each device
• Signal which device is being communicated with

• Only activates communication on transition of “select” line
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Separate chip select line for each device
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Serial Peripheral Interface (SPI)

• Serial, synchronous, bus 
communication protocol

• Single controller with 
multiple peripherals
• Within a circuit board

• High-speed 
communication
• Multiple Mbps
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A note on outdated notation

• Master/Slave paradigm
• Master is the “Computer” and is in charge of interaction

• Slave is the “Device” and has little control over interaction parameters

• Really common notation in EE side of the world.

• Not intended to be harmful, but also literally inconsiderate.

• Field is changing for the better. It’s going to take some time.
• Controller/Peripheral

• Central/Peripheral

• Device/Peripheral

• Master/Minion

• Primary/Secondary
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SPI naming schemes

• Historical SPI Naming
• MISO – Master In Slave Out
• MOSI – Master Out Slave In
• SS – Slave Select

• Revised SPI Naming
• CIPO – Controller In Peripheral Out

• SDI – Serial Data In (for devices which could act as either role)

• COPI – Controller Out Peripheral In
• SDO – Serial Data Out (for devices which could act as either role)

• CS – Chip Select

https://www.oshwa.org/a-resolution-to-redefine-spi-signal-names

https://www.sparkfun.com/spi_signal_names
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SPI wiring

• 3+N wires for N peripherals

• COPI – Controller Out Peripheral In

• CIPO – Controller In Peripheral Out

• SCK – Serial ClocK

• CS – Chip Select
• Active low signal

• Longer names remove ambiguity 
about communication
• COPI to COPI

• CIPO to CIPO
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SPI timing diagram

• CS goes low to start 
transaction and 
high to end

• Data is sent 
synchronously with 
clock signals

• Capable of full-
duplex transfers
• Both directions at 

the same time
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SPI communication

• Transactions usually 
in multiples of bytes 
(as many as 
needed)

• Bytes are sent LSb
first

• No need for framing 
bits (start/stop)
• CS handles that
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SPI configurations

• CPOL – is the clock default low or default high

• CPHA – is data read on first edge or second edge

• Peripherals tell you what their configuration is
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SPI data rate

• No particular requirements
• Speed can go as fast as your clock and line capacitance can handle

• Datasheet for devices will specify their speeds
• Sort of standards (less so than UART, for example)

• 700 kbps

• 3.4 Mbps

• 10 Mbps
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Daisy-chaining SPI

• SPI can also be formed into a ring bus

• Doesn’t save on pins, but does reduce wires…
• At the cost of reliability and speed

• Fairly rare in practice
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Bi-directional communication

• Controller starts/stops SPI 
transfers

• Peripherals often add 
interrupt outputs to signal 
controller that an event has 
occurred
• More pins, yay!

23



Use Cases

• High-speed peripherals
• Microphone, Accelerometer, External ADC

• External memory
• Memory chips

• SD cards

• All SD cards support a SPI communication mode

• QSPI – Quad SPI (four COPI lines for more throughput)

• Often used for communication with external memory
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SPI Pros and Cons

• Pros
• Faster throughput (and no overhead)

• No restrictions on data frame

• No addressing requirements or word size assumptions

• Full duplex transfers

• Cons
• Many pins: 3+N  (for N peripherals)

• CS line scales linearly (other signals are a bus)

• Controller must initiate all transfers

• Not designed for multi-controller scenarios
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Break + relevant xkcd

26https://xkcd.com/927/
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Choosing different tradeoffs from other wired communication

• Things we like from SPI
• Communication over a bus

• Synchronous communication

• Things we want from new protocol
• Fewer I/O pins

• Use a single data line for bi-directional communication

• Needs addressing and more specified data frame

• Multiple controllers sharing the bus

• Needs a bus contention solution
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Bus contention could short a shared bus

• Want to enable multiple controllers

• Problem
• What if they each try to transmit different data?

• At some point, there will be a short-circuit
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Disconnected I/O pins enable shared communication

• I/O pins often have three states
• High

• Low

• Disconnected
(also known as High-Impedance/High-Z)

• We can use this third state to enable 
communication over a shared line
• Low or Disconnected

• Wired-AND

• 1 if they are all disconnected

• 0 if any are low
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Inter-Integrated Circuit (I2C)

• Two-wire, synchronous, bus communication
• Ubiquitous in the embedded world

• De-facto standard for sensors

• Invented and patented by Phillips (now NXP)
• Patent expired in 2004

• Also known as Two-Wire Interface (TWI)
• Occasionally as System Management Bus (SMBus or SMB) but that’s 

actually a related but separate thing
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I2C overview

• SDA – Serial Data

• SCL – Serial Clock
• Usually 100 kHz or 400 kHz

• Communication is a 
shared bus between all 
controller(s) and 
peripheral(s)

• Pull-up resistors for open-
drain communication
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• SDA and SCL are open-drain
• 1 – high-impedance, let line 

float high

• 0 – active drive, pull line low
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• Pull-up resistor to provide high 
signal
• Low enough resistance that current 

can flow in a reasonable amount of 
time

• Common value: 4.7 kΩ

Open drain bus communication



I2C transactions

• Default
• Both lines float high (pull-up resistor)

• Start condition
• Drive SDA low while SCL is still high
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I2C transactions

• First byte is chip address + R/W indication
• Address: 7-bit value that needs to be different for each participant

• R/W: 1 for read, 0 for write

• Values are sent MSb first (reverse of other protocols 😱)
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I2C transactions

• Acknowledgement from peripheral follows each byte
• Controller lets line float high

• Peripheral drives line low to signal receipt of message
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I2C transactions

• Data frame(s) follow
• Sent as entire bytes, plus and ACK
• As many as needed before Stop condition

• Stop condition
• SDA goes high while SCL is high (normally data only changes when clock is low)
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Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try 
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and 
the other wants a high bit?
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Bus arbitration

• Arbitration decides which controller gets to proceed if multiple try 
to communicate simultaneously

• What happens in I2C if one controller wants a low bit and 
the other wants a high bit?
• Low bit wins! (so smaller address or data)

• Each controller constantly checks whether SDA matches the 
voltage level it expects
• Stops attempting to transmit if it ever does not

• (Only actually needs to check high signals)
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Repeated start conditions

• Repeated start conditions 
allow the bus to be used 
again while arbitration was 
won

• Trigger another Start 
condition without triggering 
Stop condition
• Send address again

• Frequently used for write 
then read pattern
• Write which value you want
• Then repeated start and read
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Clock stretching

• Clock is an open-drain 
line too
• Either device could 

keep it low

• Transaction can be 
briefly paused by 
holding SCL low
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Real-world I2C transactions
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Each I2C device on a bus mush have a different address

• Shared addresses would cause both to 
respond

• ICs often have one or more address pin(s) 
used to select bit(s) of address
• 0 pins: only one may be on bus
• 1 pin: two may be on bus
• 2 pins: four may be on bus

• If no address pins (or not enough), need 
an I2C address translator chip
• Translates addresses for one or more 

peripheral chips
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A0 is low: address  1001010x
A0 is high: address 1001011x



Sparkfun Qwiic connect system

• System for wiring multiple prototyping boards together

• Four-pin connector
• VCC (3.3 volts)

• Ground

• SDA

• SCL

• Daisy-chains through boards
• Actually connects to chips in parallel as a bus
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System Management Bus (SMBus)

• Related communication specification
• A little more strict in places, but generally interoperable

• Adds ability to broadcast or unicast messages
• Generic addresses for Contoller and various peripherals (Battery)

• Adds an open-drain shared interrupt signal
• High-impedance or pull low, just like SDA and SCL

• Allows any device to alert a controller

• Controller has to probe bus to determine which device wants attention
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I2C use cases

• Various sensors
• Usually low to medium speed

• Even relatively high speed stuff often has I2C for convenience

• Accelerometers and microphones

• Often with intelligent filtering built in

• Communication between microcontrollers
• Either can act as the Controller when necessary

• Commonly exists internally within smartphones and laptops too
• Light sensors, Temperature sensors, etc.
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I2C Pros and Cons

• Pros
• Wiring is simple

• Only uses two pins

• Very widely supported

• Cons
• Relatively slow communication rate

• Speed versus power use tradeoff (due to pull-down resistor)

• Open collector makes debugging difficult
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