Lecture 12
Wired Communication:
UART

CE346 — Microprocessor System Design
Branden Ghena — Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Alanson Sample (Michigan)

Northwestern

Administriva

* Place parts orders ASAP
 I'll do the next bunch of purchasing tomorrow

« The sooner you get your stuff, the sooner you can get started

 Quiz on Thursday
« Sorry about the late notice on that
* Quiz 4 will be on a Thursday as well

Today’s Goals

 Explore tradeoffs in wired communication
» Signals, Speed, Timing, Topology

 Describe wired serial communication protocol: UART

* Discuss nRF52 implementation of UART

Outline

 Wired Communication

* UART

* NRF52 UARTE

Purpose of communication

« Goal: convey digital information between two devices

 Simple solution
» Digital I/O pin — 1-bit of information

« Complex solution
« Send multiple bits (arbitrarily many)

« While also minimizing
« Time, Energy, Pins, Errors, etc.

Wired versus wireless communication

« Wired
 Send digital signals across one or more wires
« Advantages: Reliable, Low energy, Often simpler topology
 Disadvantages: Physically limiting

* Wireless
« Send digital signals across another medium (usually RF)
« Advantages: Physically flexible,
 Disadvantages: Unreliable, High energy, Usually broadcast

Wired versus wireless communication

« Wired
 Send digital signals across one or more wires
« Advantages: Reliable, Low energy, Often simpler topology
 Disadvantages: Physically limiting
« This week + next two lectures: UART, I12C, SPI, USB

* Wireless
« Send digital signals across another medium (usually RF)
« Advantages: Physically flexible,
 Disadvantages: Unreliable, High energy, Usually broadcast
* Next week: Wireless Communication

Tradeoffs in Wired Communication

« Number of signals

Let’s talk about each of these
« Communication speed in the coming slides

» Controlling timing

» Network topology

Tradeoff: number of signals

Serial interface example

¢ Serlal |nterface Transmitter (T X) Receiver (RX)
* Single wire (LfB} {MEia}
* Transmit data as a “series” of bits DO D1 D2 D3 D4 D5 D6 D7
separated by time po—+1 0 0 0 11 0,p

e Parallel interface

« Multiple wires Parallel interface example

« How many depends on the system Transmitter rx) Receiver (RX)
» Transmit data across multiple D7 T > D7
“parallel” wires simultaneously D> L > D2
. . >
« Still separate by time for more data D3 : > D3
I 1
than wires D1 1 s8B) > 8o

Serial versus parallel

» Serial
» Cheaper to use less wires
* Slower to transmit data
« Examples —— gt e

 Parallel

« More expensive for more pins and
wires

 Faster to transmit data
« Examples
 Internal buses, PCI, USB (3.0)

10

Tradeoffs in Wired Communication

« Number of signals
» Parallel versus Serial
- Communication speed

» Controlling timing

» Network topology

11

Tradeoff: communication speed

» Inherently limited by the speed of light
« Speed of electricity 50-99% of that
« 29cm (11.4 in) = 1 nanosecond
« Totally relevant for Gbps speeds within computers

» Also limited by interference
« Faster signals are harder to distinguish
« More susceptible to interference (matters less for wired comms)

 Limited by whether other device can keep up
« Might need some flow-control signaling to slow down when not ready

12

Example communication speed

» Internal, low-energy communication
« UART, 1-1000 kbps
« 12C, 100-400 kbps
« SPI, 1-100 Mbps

 External (mostly serial) communication
« USB, 1-10000 Mbps
« Ethernet, 1-1000 Mbps
 HDMI, 4-48 Gbps

» Internal parallel communication
« PCI, 8-32 Gbps
« RAM, 12-25 Gbps

Note: Speeds are always
measured in bit per second

13

Tradeoffs in Wired Communication

« Number of signals
 Parallel versus Serial

« Communication speed
« 1000 bps to 10000000000 bps

« Controlling timing

» Network topology

14

Tradeoff: controlling timing

« Synchronous communication Transmitter Receiver
» Clock signal sent along with data

 Data is captured at edge of clock signal
(rising or falling)

» Advantage: send signals very fast

' i ' i Receiver
- Disadvantage: extra pin and wire Transmitter

b0 b0 _bO _b0O _b0O b0
bl

« Asynchronous communication b2

» Agree upon timing in advance and read -
data at that rate

b5

b6

« Advantage: no need for clock signal o7
 Disadvantage: clock synchronization

15

Tradeoffs in Wired Communication

« Number of signals
 Parallel versus Serial

« Communication speed
« 1000 bps to 10000000000 bps

» Controlling timing
» Synchronous versus Asynchronous

* Network topology

16

How to connect: point-to-point networks

* How do we connect computers in a network?
 This is a question of “network topology”
 Simple option: just connect them directly

* Problem: what if I find a third computer?

I e

17

How to connect: bus networks

« Connect everything to one wire in parallel
 Actually a "multidrop bus”
 Scales pretty well to many computers

* Problem: which computer gets to transmit when?
« Simultaneous transmissions conflict
* Need a scheme for “arbitration”, deciding who transmits when

I 1T

Ll e LB

18

How to connect: ring networks

» Connect everything with point-to-point connections
« Connect the last computer back to the first computer
 Also known as Daisy-Chain (without the last connection back to the start)

* Problem: what if a computer stops sending?

(L

19

How to connect: star networks

 Connect to a hub with point-to-point connections
« Hub connects all computers

« Hub is a simple computer with one job: transfer communications between
computers

« Hopefully more reliable than any of the computers

20

Microcontrollers are often hubs of star networks

« Connect to multiple different sensors
« Sometimes a few sensors are connected on a bus

21

Tradeoffs in Wired Communication

« Number of signals
 Parallel versus Serial

« Communication speed
« 1000 bps to 10000000000 bps

» Controlling timing
» Synchronous versus Asynchronous

» Network topology
« Point-to-Point, Bus, Ring, Star

22

Break + Discussion

« Number of signals
 Parallel versus Serial

« Communication speed
« 1000 bps to 10000000000 bps

» Controlling timing
» Synchronous versus Asynchronous

» Network topology
« Point-to-Point, Bus, Ring, Star

What are the choices for
popular protocols?

« USB

« FEthernet
 3.5mm Audio
« HDMI

23

Outline

* Wired Communication

 UART

* NRF52 UARTE

UART Overview

 Universal Asynchronous Receiver Transmitter
 Serial communication between two devices
« Two wires: transmit and receive
« Simple to implement and very common on microcontrollers

» Tradeoff choices: Serial, Low speed, Asynchronous, Point-to-Point

« Most frequently used to send text data between devices
» Microcontroller print£ () output
« GPS to microcontroller
« Radio AT commands to/from microcontroller

25

UART data frame

One Frame (1 start bit, 8 data bits, 1 parity bit, 1 stop bit)
Al

Sander_\;srARTK b0 X b1 X - X » X > X v X — X - X P)/STO;a;V
— r r r tr r t r t | .

b0 b1 b2 b3 b4 bS5 b6 b7 P time

time instants of sampling

« Signal is high by default

» Goes low to trigger Start

» Send each data bit (high=1, low=0), plus optionally parity bit
« Goes high to trigger Stop

26

UART example, transmitting 0x32 and 0x3C

[Data (LSB first) Data (LSB first)
34V |
| Start top Start Stop
I Bito“o01 BltBlt|001111ooB|t
St ———) m—) - (fm— -t
24v |
14V |
04V |
fO.GV: O | I s ST
X | -2.5ms -213 -1.5ms -1ms -0.5ms 0 ms
0.104ms

1 start bit, 1 stop bit, 8 data bits, no parity,
baud rate = 9600 27

UART baud rates

e Baud rate is a measure
of “symbols per second”
 Typically 1 bit per
symbol, but not always

« UART is 1 bit per symbol,
but 8 gata bits per 10/11
symbols

* Any baud rate is
possible

 But there are a handful
of normal configurations

« 115200 and 9600 are
most common

 We use 38400

Baud 1-8-1
(1 start, 8 data,
1 stop)

2400 1,920 bps
4800 3,840 bps
9600 7,680 bps
14400 11,520 bps
19200 15,360 bps
38400 30,720 bps
57600 46,080 bps

115200 92,160 bps
128000 102,400 bps
256000 204,800 bps

1-8-1-P

(1 start, 8 data, 1
1 parity)
1,745 bps
3,490 bps
6,982 bps
10,472 bps
13,963 bps
27,927 bps
41,891 bps
83,781 bps
93,091 bps
186,182 bps

stop,

28

UART sampling rate

* How do we make asynchronous communication work?
 Both sides must agree on the baud rate

« Listen for start bit
« Conceptually:

* Only need to sample 9-10 more times at baud rate spacing

 Short enough that clocks should diverge too much

» Realistically:
« Sample 8 or 16 times per bit
» Determine boundaries between bits

e Select most common value
between boundaries

UART
RECEIVED
DATA

UART
161 CLOCK

START

MICEIT

START BIT

MIDEIT

DOBIT

A

8 CLOCK
CYCLES

29

A little history...

Mouse

Western Digital developed

the first widely available , g I"1
_ single-chip UART (the i || J | Ethernet

WD1402A) around 1971.

Two _
UART: Protocol Serial Pe;;alle/
— RS-232: Standard Ports o
DB9: Connector
: : ; Analog
Starting in the 2000s, most computers removed their e, Game
external RS-232 COM ports and used USB ports that - In and Out Port
provided superior bandwidth performance.
UARTsS is still widely used today in Billions of devices! S-ideo TV VGA

Out Out

Serial communication - DB9 connector

Pin3 ' ph -
- '[l)'r:tr;s(r:'llt)) | N ' Sigllal Dmm
Pt Dy Dt Terminl 1 DCD Data carrier detect
Detect (DCD) gy 2 RxD Receive Data
(ot used) " 3 TxD Transmit Data
Orours = DTR Data terminal ready
5 GND Signal ground
e 6 DSR Data set ready
oo 0 7 RTS Ready to send
(not used) Ringing Indicator (RI) 8 CTS Clear to Send
Pin7 iy e 9 RI Ring Indicator
Requastio. eo . o Sond
Send (RTS) (CTS)
« Common pattern in cables « Signal voltage not compatible

 Ground (must be common), often VCC, Tx, RX with modern microcontrollers!
* Plus extra wires for signaling metadata « Up to +/- 15 volts

31

UART: chip-to-chip communication

 Usually implemented as a two-wire interface

« TXD: Transmits data
 RXD: Receives data

 Optionally two additional pins for flow control

* No clock signal! Asynchronous

* Note: TX connects to RX
(you'll always get this
wrong on the first try)

Device 1 Device ?
X X
UART >< UART
Inteface RX RX |nteface
GND GND

32

Detecting errors with parity

» Choose one configuration for all UART messages
« Even parity: total number of "1” bits in data is even
« Odd parity: total number of “1” bits in data is odd

» Parity bit: set to 1 or 0 to guarantee the parity configuration

« If message doesn’t match parity configuration at receiver,
there was a bit error (single error detecting)

« Example: Data = 10101011 (five “1” bits)
« Odd parity: set parity bit to zero
« Even parity: set parity bit to one

33

UART error conditions

* Parity failure
» Bit error when receiving data

» Overrun
« New data arrived and overwrote buffer in peripheral before it was read

* Framing
 Did not see Stop Bit when expected (should be guaranteed “1")

 Break condition
« Signal is low for entire message (Zero data plus Framing Error)
 Often used as a signal between devices

34

UART flow control

« How do we ensure that the other device is ready for the message?

« Add two pins for “hardware flow control”

« Ready To Send (RTS) output, signals that you want to send data
* Clear to Send (CTS) input, signals that other device is ready to receive

« Software flow control is possible
too

» Send special byte that means pause
or resume transmissions

« Only works with ASCII (otherwise that
byte might be valid data)

Figure 2.1. Hardware Flow Control

Device A

X X
RX [X
CTsS ¥
RTS [X
GND [X

e

Device B

K TX
] RX
] CTS
] RTS
] GND

!

UART to USB bridge

Microcontroller FT232R Computer
X TX -
USB Ce USB
SART o DC RX | inertace nterfoce
Inteface
GND |- p{ GND

USB to serial UART
« FTDI makes the most common chip to do this (FT232)

 Microbit uses a microcontroller to do this!
« KL27Z connects to USB
* Also connects to nRF52833 via UART and JTAG
« ttyACMO is a “virtual serial device” on top of USB, miniterm is a serial console

UART Pros and Cons

* Pros
* Only uses two wires
* No clock signal is necessary
 Can do error detection with parity bit

» Cons
« Data frame is limited to 8 bits (20% signaling overhead)
« Doesn’t support multiple device interactions (point-to-point only)
« Relatively slow to ensure proper reception

37

Break + Longer Decoding Example

T :

DIG00 00 01 01|10l0 11 11110100000 110

S @ S o~

T O t+ uw

65 ms / 40 bits = 1,625 ms per bit

B W b e so o s BT fed i e d e oAl

0D001100]1
0

n o

SS 0 S
t t
(o] (0]
P p

baud rate =1/ 0,001625 = 615,4

38

Outline

* Wired Communication

* UART

* NRF52 UARTE

Which UART peripheral?

 Two peripherals in the nRF52 documentation

« UART peripheral
 Standard UART without DMA
» Deprecated (as in, they suggest not using it)

» UARTE peripheral
- Standard UART with DMA

 Their registers overlap

« They are two different ways of using the same hardware
« Only one at a time can be “active”

40

UARTE peripheral

PSELRXD PSELCTS PSELRTS PSELTXD
1 1 1]
STARTRX - — — STARTTX
RXD TXD
STOPRX (signal) (signal) STOPTX
HEMANE N RXD.PTR \ \ TXD.PTR -
SUSPEND
RESUME
-t
ENDTX
RX
RXTO P FIFO EasyDMA EasyDMA oTS
- —P
ENDRX A NCTS
-« —
RAM 4
RXD TXD
RXD+1 TXD+1
RXD+2 TXD+2
RXD+n TXD+n

41

UARTE peripheral

PSELRXD PSELCTS

PSELTXD

STARTRX

STARTTX

STOPRX signal STOPTX
HEMANE N RXD.PTR \ \ TXD.PTR -
SUSPEND
RESUME
-«
ENDTX
RX EasyDMA EasyDMA
RXTO FIFO Y y cTs
- —P
ENDRX A NCTS
- —P
RAM '
RXD TXD
RXD+1 TXD+1
RXD+2 TXD+2
RXD+n TXD+n

* Pins: RX, TX, (optional) CTS and RTS

42

UARTE peripheral

PSELRXD PSELCTS PSELRTS PSELTXD
[[[

-l L L
STARTRX Li STARTTX
RXD TXD B S

(signal)

STOPRX

(signal) STOPTX
| RXD.PTR || TXDPTR | -

SUSPEND
-
RESUME
-

ENDTX

RXTO EasyDMA EasyDMA oTS

—>

NCTS
A 4’

ENDRX

TXD
TXD+1
TXD+2
TXD+n

 Receive connects directly to buffer in RAM

UARTE peripheral

PSELRXD PSELCTS PSELRTS PSELTXD
1 1 1]
STARTRX - — — STARTTX
4» RXD TXD
STOPRX (signal) (signal) STOPTX
HEMANE N \ RXD.PTR \ TXD.PTR \
SUSPEND
RESUME
ENDTX
RX
RXTO . FIFO ——= EasyDMA EasyDMA cTS
DR
ENDRX A NCTS
-

RAM "

RXD
RXD+1
RXD+2
RXD+n

* Transmit connects directly from buffer in RAM (not flash!)

UARTE baudrates

e Choose from
standard,
preconfigured . ——

& FW BAUDRATE Baud rate

buad rates Baud1200 CReO0FO0D 1200 baud |actual rate: 1205
Baud2400 000090000 2400 baud (actual rate: 2396)
Baud4800 000136000 4800 baud (actual rate: 4308
Baudo600 0xD0Z75000 9600 baud (actual rate: 9598]

Baud 14400 OxD03AFDO0 14400 baud (sctual rate: 14401)
Baud15200 OxDOLERDD0 19200 baud (actual rate: 19208]

e That values are — om0 2800t et 2377
32-bit numbers e T e sove
implies other saudscono CUOESO000 36000 s (st et 3244

BaudS7600 DXDOEBO000 57600 baud (actual rate: 57554)
b d Baud76800 Dx013AS000 76800 baud (actual rate: 76923)
au _rates are Baud115200 Dx01D60000 115200 baud (actual rate: 115108)
pOSSIbIe Baud230400 0%03B00000 230400 baud (actual rate: 231384)
Baud250000 0x04000000 250000 baud
Baud460B00 007400000 460800 baud (actual rate: 457143)
Bauda21600 DXOFOODO00 921600 baud (actual rate: 941176)

Baudin 10000000 1 megabaud

45

Typical UART configurations

* Baud rate 115200
* No parity
* No flow control

 Probably covers ~70% of UART communication
* Baud rate 9600 covers another 15%

46

UARTE driver code

* Pretty straightforward to implement driver for this
 Definitely could have been a lab

 Basically DMA is exactly what you want
 Pointer to buffer of data (in RAM)
 Length
« Go!

« More interesting: how does printf () use the UART?

47

boards/microbit_v2/microbit_retarget.c

* printf () _write(file,
{
eventually calls UNUSED_PARAMETER(File);
~write () with

formatted data len8 = len & ;
nrf _drv _uart_tx(&m uart, (*)p_char, len8);

len8:

* Converts
stdio calls
into UART TX UNUSED_PARAMETER(file);
and RX

* Library just
sets DMA and
starts TX

_read(file, * p_char, len)

ret code t result = nrf _drv uart rx(&m uart, (
(result == NRF_SUCCESS) {

Outline

* Wired Communication

* UART

* NRF52 UARTE

