
Lecture 11
Analog Output

CE346 – Microprocessor System Design

Branden Ghena – Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

• Design presentations on Thursday
• Happy to discuss things before then either after class or on Campuswire

• Drop deadline is end-of-week
• I’m not worried about anyone in CE346

2

Today’s Goals

• Explore common methods for generating analog signals

• Understand the role of Digital-to-Analog converters

• Discuss the concepts of Pulse-Width Modulation
• And the nRF52 implementation of it

3

4

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline

Digital-to-Analog Converters

• Generates an analog voltage

• DACs are conceptually the
inverse of ADCs
• Number of bits of resolution

choose analog step size

• Frequency determines step
duration

5

High resolution versus high frequency

• What role does each play in a DAC?
Which is more important?

• High resolution can accurately represent a voltage

• High frequency can accurately represent a changing voltage

• In practice:
• Need high enough resolution, then as high of frequency as possible

6

Infinite resolution is not sufficient

• DAC frequency corresponds
to representable signal
changes
• Rise and fall times

• Even an infinite resolution
DAC cannot represent a
signal if it is not fast
enough

7

Low-pass filter smooths output

• Low-pass filter delays changes in
voltage and smoothly transitions
between them
• Low-frequency signals stay

• High-frequency are smoothed

• Greatly improves quality of output
but must be tuned to the desired
signal frequency
• Usually not included in

microcontroller

8

Resistor string DAC

• Use series of voltage dividers
and switches to set output
voltage
• Generates equally spaced

voltages that can be selected
between

• Needs output buffer to provide
stable current

• Takes a lot of resistors
• And resistors take a lot of silicon

9

Resistor string example

• 𝑽𝒐𝒖𝒕 = 𝒄𝒐𝒅𝒆 ∗
𝑽𝒓𝒆𝒇

𝟐𝒓𝒆𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏

• Input code is 101
• Selects switches such

that 5/8*Vref is
connected to output

10

DAC applications

• What do you use an analog output for?

• Audio output

• But it needs to be high quality (resolution and speed)

• Motors

• But only with a controller that actually drives them with enough current

• LED brightness

• Not Much

• And these last two can be done more easily with PWM

11

DACs are not in all microcontrollers

• Not rare, but not ubiquitous either
• Every microcontroller has GPIO

• Just about every microcontroller has an ADC

• Some microcontrollers have DACs

• Reasons
• Hardware is complicated (but we could fit it if we wanted)

• Use cases are uncommon (and might need very high quality)

• Many devices can be controller digitally

• Pulse-Width Modulation (PWM) can emulate usably analog signals

12

13

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline

Pulse-Width Modulation

• Much easier to control high or low
than an analog output

• Idea: modify how long a signal is
high within some switching
frequency, a.k.a duty cycle

• On 50% of the time for half voltage

• On 10% of the time for tenth voltage

• Duty cycle, not frequency!

14

PWM to Analog Signal example

16

Low-pass approach works here too

• Importantly, many devices are
inherent low-pass filters

• Heaters, Motors

• LEDs are not
• But our eyes are!

17

Controlling PWM

• Vary duty cycle by selecting transition
points
• Time when set
• Time when unset

• Repeat every cycle
• Period much faster than signal if possible
• Makes analog approximation more accurate

• The faster you run it, the less likely it
matters that it is not actually analog

• Example: LED switching frequency

• Duty cycle could vary cycle-by-cycle if it
must

18

PWM alignment

• Can select alignment
as well
• Equivalent to a phase

delay

• Centering produces
cleaner analog output
• Less harmonics

• Not relevant for most
devices

19

Every microcontroller can do PWM

• Not every microcontroller has a PWM peripheral

• But every microcontroller has timers and digital outputs

• But all that is need is a GPIO and a Timer (or two)
• Timer determines when to turn GPIO on and off

• Often can be automated in hardware rather than use interrupt handler

20

PWM is a method of encoding data

• PWM is a pulse-width modulated signal

• There are many other ways to “modulate” a signal to transmit data
• Amplitude, Frequency, and Phase are common

• Layers data on top of an existing “carrier signal”

• Used especially for high-speed communication
• Wired (cable lines) or Wireless (basically everything)

21

PWM applications

• Servos
• Duty cycle chooses angle

• Motor controllers
• Duty cycle chooses current and therefore speed

• LED brightness
• And “breathing” effect

• Audio
• Can sound okay if frequency is high enough

22

Break + Open Question

• How much faster should the PWM frequency be than the signal
frequency?
• What happens if the PWM frequency is too low?

23

24

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline

nRF52 PWM peripheral

• Uses internal timer to
create PWM output on
up to 4 pins
• 4 peripherals, so up to

16 pins total

• Loads compare values
via DMA to rapidly
vary “analog” signal

25

PWM example

• Counter increments up
to COUNTERTOP, resets
and continues

• Frequency
• Chosen by COUNTEROP

and timer PRESCALER

26
Time

Counter
Value

One PWM period

PWM example

• Counter increments up
to COUNTERTOP, resets
and continues

• Duty Cycle
• COMP0 chooses first

toggle point for OUT[0]

• Second toggle point is
when the timer resets

27
Time

Counter
Value

(right-aligned) 𝐶𝑂𝑀𝑃 =
𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 − (𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 ∗ 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒)

(left-aligned) 𝐶𝑂𝑀𝑃 =
𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 ∗ 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒

One PWM period

Center-aligned PWM

• Up-and-down mode enables
center-aligned PWM

• Duty Cycle
• Comp triggers toggle on rise

• Comp triggers toggle again on
fall

𝐶𝑂𝑀𝑃 =

𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 − (𝐶𝑂𝑈𝑁𝑇𝐸𝑅𝑇𝑂𝑃 ∗ 0.5 ∗ 𝐷𝑢𝑡𝑦𝐶𝑦𝑐𝑙𝑒)

28

Trading speed and accuracy

• How do you get the most accurate PWM
values?
• Select the largest COUNTERTOP possible

• Most possible COMP values
• Up to 15-bit resolution (32767 max)

• How do you get the fastest PWM frequency?
• Select the smallest COUNTERTOP possible
• PRESCALER also affects this

• 16 MHz – 128 kHz (8 possible values)

• Fastest PRESCALER + largest COUNTERTOP
equals 488 Hz
• Likely need to sacrifice resolution for speed

29

DMA with PWM

• Every N periods it loads a new configuration from RAM
• N combined with PRESCALER and COUNTERTOP chooses “analog signal” period

• Configuration sets COMP values for each output channel
• Also sets polarity (starting value: low or high)

• Application of memory loads to channels is configurable

30

Waveform mode

• Also has the option to change COUNTERTOP every N PWM periods

• Allows arbitrary waveforms to be created
• Frequency changes every period

• Duty cycle can also change each period

31

Other configurations

• How many times the entire DMA sequence repeats
• 0 to large number, infinite with a configuration in SHORTS

• How long to delay between repeating sequence cycles
• Repeats last PWM configuration

• Two DMA sequence configurations (0 and 1)
• Can modify one while the other is playing

• Allows continuous signal (for example, music)

32

nRF SDK PWM driver

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrfx__pwm.html

• Initialize PWM with base configuration
• Output pins, Clock frequency, COUNTERTOP, DMA grouping mode

• Handler for events from peripheral

• nrfx_pwm_simple_playback(instance, sequence, count, flags)
• Instance: pointer to global variable with registers

• Sequence: struct containing sequence to be played (see next slide)

• Count: number of times (1 or more) to repeat sequence

• Flags: stop peripheral when done, loop forever, various events

33

https://infocenter.nordicsemi.com/index.jsp?topic=%2Fsdk_nrf5_v16.0.0%2Fgroup__nrfx__pwm.html

Sequence struct

• values: pointer to array of uint16_t values (union of types)

• length: length of array

• repeats: number of times to repeat each individual value
• Sets period for “analog value” changing

34

Example, playing a note

• Pick PWM frequency to match note frequency
• Combination of PRESCALER, COUNTERTOP, and repeats
• 440 Hz for the note A

• PRESCALER 1 MHz, COUNTERTOP 227 -> 4.40 kHz
• repeats = 10 -> 440 Hz (in case we’re changing notes)

• Set duty cycle of PWM to control volume
• 50% duty cycle -> COMP value of 113

• Set sequence with an array of length 1, content is {113} (polarity 0)

• Repeats 10, end_delay 0

• Set playback_count to 1 and flags to NRFX_PWM_FLAG_LOOP

35

Controlling LED Matrix brightness

• Option 1: PWM peripheral
• Need to use multiple PWM peripherals to get 5 pins

• Could only allow brightness to be controlled for the entire matrix

• Then use a single PWM output to control the row

• When timer fires, change which row pin is used for PWM

• Option 2: do it manually (for individual control)
• Can’t determine duty cycle when the row is turned on

• Each row already at 100 Hz, duty cycling would be slower and visible

• Instead add 5 new one-shot app timers, one for each column

• Fire at some time while the row is active (within that 2 ms)

• Use to toggle column LED back to off

36

37

• Digital-to-Analog Converters

• Pulse-Width Modulation

• nRF52 PWM

Outline

