Lecture 10 Prototyping

CE346 – Microprocessor System Design Branden Ghena – Fall 2021

Some slides borrowed from: Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley), Project Lead The Way

Northwestern

Administrivia

- Project Design Presentations
 - Next week Thursday in class
 - See Campuswire post for details

Today's Goals

• Discuss issues to consider when prototyping systems

• Understand how to use breadboards for prototyping

Explore various components and how you might use them with a breadboard

• Also, understand process of capacitive touch sensing

Outline

Overview of Prototyping

• Breadboarding Components

• Capacitive Touch Sensing

Prototyping goals

- Does this thing work at all?
 - Particular IC
 - Circuit layout
 - Software design
 - etc.
- Sometimes before doing something more serious with it
 - Design a PCB, Make a product, etc.
 - Not uncommon that the prototype is as far as you'll get

Isolating tests

- The goal when prototyping is to isolate the question at hand
- Do consider
 - New sensor/IC/component/whatever
- Do not consider
 - Power
 - Interference
 - Enclosure
 - Stable microcontroller
 - Soldering skills

Buying Parts

- Prototyping vendors
 - Where you look for cool stuff to buy
 - <u>Sparkfun</u>
 - Adafruit
- Electronics vendors
 - Where you buy parts when you know what you need
 - <u>Digikey</u>
 - Mouser

Prototyping methods

- Breadboarding
 - Plug and connect components as needed
 - Build up arbitrarily complex designs from nothing
- Development kits
 - Pre-fabricated systems design for testing components
- Small-scale test PCBs
 - Design a PCB that demonstrates the thing you're interested in
 - Making a PCB is less hard than some might think (Eagle, Fritzing, etc.)
 - \$20-30 for small, low-speed PCBs from batch services like OSHPark

Breadboards for prototyping

- Reusable platform for temporary circuits
- Plug in jumper wires and through-hold components

How a breadboard works

- Component leads and wires are inserted into holes in the breadboard
- Half-rows of five holes are connected
- Vertical columns are connected for power/ground

Holes to insert wires

Breadboard LED example

Uses button to control LED

fritzing

Breadboard guidelines

- Long wires in large bird nests makes debugging very difficult
 - Shorter, constrained wires are easier to understand
 - In this class, we'll only have large jumper wires though...
- Use the minimum jumpers necessary, mostly use breadboard for connections

Better

More permanent breadboards

• Breadboards are also known as "Solderless Breadboards"

- Protoboard allows configurable circuits
 - Solder jumper wires between locations
 - Solder adjacent pads to form connection

- Usually not worth it (just make a PCB)
 - Does solve core problem of breadboards: things getting unintentionally unplugged
 - Might be useful for some projects!

When to not use breadboards

- Breadboards work great for digital circuits and simple analog!
- High voltage/current are bad for breadboards
 - Honestly, anything above 12 volts DC shouldn't be in a breadboard
 - Also avoid high-power applications above a few Watts
 - Never put AC in a breadboard
- Sensitive analog circuits
 - Particularly anything sensitive to capacitance may not work right
 - Sets of metal holes with strips connecting them function as capacitors
- Anything in long term use

Outline

Overview of Prototyping

Breadboarding Components

Capacitive Touch Sensing

Prototyping with a breadboard

- What kinds of things might you use with a breadboard?
- Jumper wire
- Microbit!
- Resistors/Capacitors
- LEDs
- Buttons/Switches
- Analog Sensors
- Various other through-hole components
 - Transistors, Op-Amps, other ICs

https://www.adafruit.com/product/2975

Jumper wires

• Connect two rows in the breadboard together

- Recommendation:
 - Peel off sets of 2-4 wires and keep them stuck together
 - Often want to run multiple at once

Microbit

- Always connect LED matrix side up
- Breaks out various pins from board
 - Need to consult table to know which pins
 - <u>https://tech.microbit.org/hardware/schematic/</u>

https://www.sparkfun.com/products/13989

https://learn.sparkfun.com/tutorials/microbit-breakout-board-hookup-guide

Resistors

Resistor color codes

• Colored bands on resistors label the resistance value of the part

- First and second bands are the digits
- Third band is multiplier
- Fourth band is tolerance
 - Usually gold: +/- 5%

Example: determine the resistor

Example: determine the resistor

• 56 x 10 Ω = 560 Ω (±5%)

Potentiometers

- Vary resistance between zero and some maximum
 - 1 kΩ, 10 kΩ, 100 kΩ common
- Connect middle and an edge for just a changeable resistor
- Middle terminal is a movable resistor divider
 - Knob changes middle output if outer pins are VCC and Ground

LEDs

• Directional component: only allows current to flow one way

- Shorter side is the negative one
 - i.e. where current flows to

RGB LED

- Three different colors of LED in a single large diffuser
- Short leads are negative ends
 - One for each color
- Long lead is common power
 - Common anode
- Combinations of LEDs give other colors
 - Cyan, Yellow, Violet, White

Sensors

• Thermistor

• Photoresistor

Breadboard demo!

- RGB LED
 - Plus resistors

- Control LED with
 - Switch
 - Potentiometer
 - Photoresistor

Outline

Overview of Prototyping

• Breadboarding Components

Capacitive Touch Sensing

Capacitive Touch Sensor

- Pull-up resistors connected to metal pads
 - Also connected to GPIO pin
- Acts as a capacitor connected to ground

Capacitive touch sensing method

- 1. Drive GPIO pin low
 - Connects the pad to ground
- 2. Set GPIO pin as input and enable low-to-high interrupt
 - Pad is pulled high. This takes time based on capacitance
 - Use a timer to determine time until interrupt
 - \sim 70 µs with no finger, milliseconds with finger
 - Needs to timeout after a few milliseconds
- 3. Repeat periodically

Sudden large increase in rise time \Rightarrow someone is touching!

• Finger acts as a large capacitor

Capacitive touch works on any metal surface

• Idea: Microbit door handle sensor

- Connect a wire and a pull-up resistor to a metal door handle to sense when someone is touching it!
 - Timing will be very different from capacitive pad, but should be repeatable and distinguishable from human touch

Outline

Overview of Prototyping

• Breadboarding Components

Capacitive Touch Sensing