Lecture 09 Sensors

CE346 – Microprocessor System Design Branden Ghena – Fall 2021

Some slides borrowed from: Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Administrivia

Every group should have now received feedback from me on their proposals

- Project Design presentations will be next week **Thursday**
 - I'll provide details tomorrow

Today's Goals

• Think about sensing and sensors

• Explore a variety of sensor types, how they are made, and what their capabilities are

• Discuss an example research platform with a custom sensor

Outline

- Sensing Overview
- Types of Sensors
 - Temperature
 - Light
 - Inertial
 - Others
- Research case study

Definitions

- A **sensor** is a device that measures a physical quantity
 - Temperature sensor
 - Light sensor
 - Microphone

- An **actuator** is a device that modifies a physical quantity
 - Heater
 - Motor
 - Speaker

Sensors transform quantity into an electric signal

- Microcontrollers can interact with analog signals
 - Generating an analog signal proportional to physical quantity makes the quantity able to be sensed

- How do we generate an electrical signal?
 - Ohm's Law: V = I * R (Voltage = Current * Resistance)
 - Vary any one of these three and an analog signal is created

Resistive sensors

$$R = \frac{\rho L}{A}$$

- L: length of the conductor
- A: area of the conductor
- ρ: resistivity of the conductor material
- Various materials have resistivity that is itself a function
 - Based on temperature, light, strain, etc.

Using a resistive sensor

Vs

Temp= 25°C

- Place in series with another resistor
 - Between VCC and ground

 Measure voltage between the two relative to ground

Supply Voltage

Vout

 Forms a "voltage divider"

Voltage divider

•
$$V_{out} = \frac{R_2}{R_1 + R_2} * V_{in}$$

• V_{in} is a voltage source

- R₁ and R₂ are resistors
- If $R_1 == R_2$ • $V_{out} = V_{in}/2$
- Smaller R₁ means larger V_{out}
 - V_{out} approaches V_{in}

Generating voltage via piezoelectric effect

- Compression of the material generates a voltage
- Various sources of compression:
 - Air Pressure
 - Acceleration
 - Strain

No Pressure

V=0

Understanding sensor voltage

• Once you get a voltage, what do you do with it?

- Need to understand the transfer function between voltage and the sensed quantity
 - Examples for an accelerometer: senses acceleration

- Hopefully, function is linear
 - Occasionally, function is NOT

Affine sensor model (for linear sensors)

$$F(x) = ax + b$$

- x is the quantity being sensed
- F(x) is a voltage proportional to that quantity
- Parameters
 - a: sensitivity, units Volts/quantity
 - Change in voltage per change in quantity
 - b: bias, units Volts
 - Offset in voltage for zero of the quantity

Bias and sensitivity example

Understanding transfer function: ADXL330 datasheet

• Ratiometric

Relative to sensor voltage

Bandwidth

 Data update speed of the sensor $T_A = 25^{\circ}$ C, $V_S = 3$ V, $C_X = C_Y = C_Z = 0.1 \mu$ F, acceleration = 0 g, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.

Parameter	Conditions	Min	Тур	Max	Unit
SENSOR INPUT	Each axis				
Measurement Range		±3	±3.6		g
Nonlinearity	% of full scale		±0.3		%
Package Alignment Error			±1		Degrees
Inter-Axis Alignment Error			±0.1		Degrees
Cross Axis Sensitivity ¹			±1		%
SENSITIVITY (RATIOMETRIC) ²	Each axis				
Sensitivity at Xout, Yout, Zout	$V_S = 3 V$	270	300	330	mV/ <i>g</i>
Sensitivity Change Due to Temperature ³	$V_S = 3 V$		±0.015		%/°C
ZERO g BIAS LEVEL (RATIOMETRIC)	Each axis				
0 g Voltage at Хоит, Youт, Zouт	$V_S = 3 V$	1.2	1.5	1.8	V
0 g Offset vs. Temperature			±1		m <i>g/</i> °C
NOISE PERFORMANCE					
Noise Density Xout, Yout			280		µg/√Hz rms
Noise Density Zout			350		µg/√Hz rms
FREQUENCY RESPONSE ^₄					
Bandwidth Xout, Yout ⁵	No external filter		1600		Hz
Bandwidth Z _{ouT} ⁵	No external filter		550		Hz
R _{FILT} Tolerance			32 ± 15%		kΩ
Sensor Resonant Frequency			5.5		kHz
					14

Active and passive sensing

Passive Sensing

Active Sensing

Active and passive sensing

- We usually focus on passive sensing
 - Cheaper and lower energy costs!

- Active sensing examples
 - Flash photography
 - Ultrasonic distance sensing
 - Lidar and Radar

Intelligent sensors

- Many embedded sensors are more intelligent than simple analog
- Combine it with a built-in ADC
 - Can be more finely tuned and calibrated for accuracy
 - Now gives digital output over some wired communication mechanism
- Combine it with additional circuitry / computation
 - Automatically filter data
 - Detect specific signal patterns and interrupt
- I pointed most groups at intelligent sensors (QWIIC)

Break + Question

- Accelerometer
 - Measures 0-5 g
 - Over a 0-5v range
- What is sensitivity?
- What is bias?

• What acceleration is the voltage reading 3.5 volts?

Break + Question

- Accelerometer
 - Measures 0-5 g
 - Over a 0-5v range
- What is sensitivity? 1 v/g
- What is bias? 0 v

- What acceleration is the voltage reading 3.5 volts?
 - 3.5 v = 1v/g * x + 0v -> 3.5 g

Outline

Sensing Overview

Types of Sensors

- Temperature
- Light
- Inertial
- Others
- Research case study

Digital temperature sensor

- Thermostat
 - Original meaning of the word
- Heat bends a strip of two
 different metals
- Switches circuit on/off based on the temperature

Thermo-electric temperature sensing

• Thermocouple generates a voltage based on temperature

- Can be used to harvest energy to run system
 - Part of RTG design

Resistive temperature sensing

- Thermistor varies resistance based on temperature
- Set up as a voltage divider to measure

- Advantages: extremely cheap and easy to use
- Disadvantages: non-linear transfer function

Outline

Sensing Overview

Types of Sensors

- Temperature
- Light
- Inertial
- Others
- Research case study

Measuring light

• Lux: unit of illuminance

• Beware spectrum sensitivity

Illuminance	Example
0.002 lux	Moonless clear night sky
0.2 lux	Design minimum for emergency lighting (AS2293).
0.27 - 1 lux	Full moon on a clear night
3.4 lux	Dark limit of civil twilight under a clear sky
50 lux	Family living room
80 lux	Hallway/toilet
100 lux	Very dark overcast day
300 - 500 lux	Sunrise or sunset on a clear day. Well-lit office area.
1,000 lux	Overcast day; typical TV studio lighting
10,000 - 25,000 lux	Full daylight (not direct sun)
32,000 - 130,000 lux	Direct sunlight

Resistive light sensing

• **Photocell** changes resistance with light (non-linear)

ABSOLUTE MAXIMUM RATING (TA)= 23°C UNLESS OTHERWISE NOTED

SYMBOL	PARAMETER	MIN	MAX	UNITS
V _{pk}	Applied Voltage		150	V
P _{d Apo/At}	Continuous Power Dissipation		100	mW/°C
To	Operating and Storage Temperature	-30	+75	°C
Ts	Soldering Temperature*		+260	°C

* 0.200 inch from base for 3 seconds with heat sink.

ELECTRO-OPTICAL CHARACTERISTICS RATING (TA)= 23°C UNLESS OTHERWISE NOTED

SYMBOL	CHARACTERISTIC	TEST CONDITIONS	MIN	ТҮР	MAX	UNITS
R _D	Dark Resistance	After 10 sec. @ 10 Lux @ 2856 °K	0.2			ΜΩ
R	Illuminated Resistance	10 Lux @ 2856 °K	3		11	ΚΩ
S	Sensitivity	LOG(R100)-LOG(R10)** LOG(E100)-LOG(E10)***		0.6		Ω/Lux
λ range	Spectral Application Range	Flooded	400		700	nm
λpeak	Spectral Application Range	Flooded		520		nm
tr	Rise Time	10 Lux @ 2856 °K		55		ms
Tf	Fall Time	After 10 Lux @ 2856 °K		20		ms

Kit version:

- 10 k Ω when dark
- $1 \ k\Omega$ when light

**R100, R10: cell resistances at 100 Lux and 10 Lux at 2856 °K respectively .

***E100, E10: luminances at 100 Lux and 10 Lux 2856 °K respectively.

Photodiodes leak current based on light levels

- When voltage is applied in reverse to an ideal diode, no current flows
- But some small amount of current leaks for real-world diodes
 - Proportional to light levels!
- LEDs can be used as (crappy) photodiodes as well!
 - Apply reverse voltage
 - Read in leak current as voltage across a resistor using ADC

https://wiki.analog.com/university/courses/electronics/electronics-lab-led-sensor

Light color sensing

Respond to specific light colors separately

- Intelligent sensor: photodiodes combined with ADCs and a wired interface (I2C)
- Allows interrupting based on comparator too

Passive Infrared (PIR) sensor

- Detect movement in the environment
 - By detecting change in IR levels
- Often come with plastic lens cover to improve field of view and range

PIR sensors come in digital and analog forms

Digital includes a preconfigured comparator

Outline

Sensing Overview

Types of Sensors

- Temperature
- Light
- Inertial
- Others
- Research case study

Inertial Measurement Unit (IMU)

- IMUs (a.k.a 9 degree-of-freedom, 9DOF) are used for tracking motion of a device
 - Acceleration (X, Y, Z axes)
 - Rotation (X, Y, Z axes)
 - Magnetism (X, Y, Z axes)
 - Sometimes 6DOF with Acceleration + one of the others
- Intelligent sensing: combines multiple sensors, ADCs, and computation with a wired interface
 - 9 analog inputs would otherwise be too many
- Can be used to track motion, determine transportation method
 - Smartphones, Robotics, etc.

Sensing acceleration

• Goal: create a voltage that changes based on force

Microelectromechanical Systems (MEMS)

• Same concept, but within an IC and 1 to 100 micrometers in size

Using accelerometers

- Accelerometers usually measure in g's
 - Where 1 g equals acceleration due to Earth gravity
- Determining distance from acceleration is possible
 - But messy. Error is squared when integrating
 - Needs careful filtering and is only accurate over short periods
 - Often fills in gaps between GPS samples (or other localization systems)
- Accelerometers also work as tilt sensors
 - Constantly sensing pull of gravity
 - $A[x] = 1 g * \sin(\theta)$

Gyroscopes

- Measures angular velocity
 - Usually lower limit than you might hope
 - <10 rotations per second</p>

- Usually, we want angle instead of rotation speed
 - Integrate signal to determine current angle
 - Combine noise and DC bias with integration and you get a continuously accumulating error: drift

Magnetometer

- Measures the magnetic field
- Usually used in devices as a compass
 - Detect Earth's magnetic field orientation

- Problem: Earth's magnetic field often overwhelmed by local magnetism when indoors
 - Large chunks of metal in walls, for example
 - Or other metal parts nearby on the circuit board
- Satellites can use magnetometers for localization

Outline

Sensing Overview

Types of Sensors

- Temperature
- Light
- Inertial
- Others
- Research case study

Other sensors

• Environment: Pressure, Humidity, Air Velocity, Air Quality

• Distance: Ultrasonic, Lidar, or Radar

• Biometric: Pulse Oximeter, Heart Rate

• Agricultural: Soil moisture

Break + Open Question

How are new sensors discovered/created?

Outline

- Sensing Overview
- Types of Sensors
 - Temperature
 - Light
 - Inertial
 - Others
- Research case study

PowerBlade current sensing

• Example of creating a custom sensor

- PowerBlade goals
 - Sense current and voltage in real-time
 - Be small enough to be deployable
- Problem
 - To measure current, you usually have to break the circuit
 - But PowerBlade attaches in parallel

Measuring current

 Coil of wire in a changing electric/magnetic field produces a voltage

 One way to make inductors is as a coil of wire wrapped horizontally around a magnetic core

• Re-purpose horizontally wirewound inductor as current sensor!

Sensor placement

• Is in the middle or close to a prong the best choice?

- Turns out it's closer to a prong
 - Decreases with distance squared
- Angled like the magnetic field is

Measuring sensor values

Sensor output is very small

• Amplify to make output large enough to accurately measure with ADC

- Need to pick sampling rate
 - AC: 60 cycles per second in US
 - Need N * 60 measurements per second
 - N=42 (as fast as we can measure)
 - 2520 measurements per second

At first, our output signal was this green line

Measurement into current

• Search coil measures the derivative of current!!

• Need to integrate to get signal and apply sensitivity and bias

$$Current \approx \int \left(\frac{V_{CC}}{2} + \alpha \, \frac{dI}{dt}\right) dt \approx \alpha \, I + \beta$$

Outline

- Sensing Overview
- Types of Sensors
 - Temperature
 - Light
 - Inertial
 - Others
- Research case study