
Lecture 07
Driver Design

CE346 – Microprocessor System Design

Branden Ghena – Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administriva

• Project Proposals due today!
• A few are in so far and they look great and I’m super excited!!!!!

2

Today’s Goals

• Finish up Timer-like peripherals

• Explore another aspect of device driver design
• Non-blocking vs Blocking interfaces

• Discuss how interrupts interact with these
• Event-loop as a partial alternative

3

4

• Real-time Counter

• Watchdog Timer

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

Real-time Counter

• Low-power (32 kHz) version of Timer
• Only a 24-bit internal Counter

• Note: abbreviated RTC, but that already means something else (Real-Time Clock)

5

Differences between Real-Time Counter and Timer

• Runs off of LFCLK instead of HFCLK
• With smaller prescaler value (4096 vs 32768)

• 24-bit counter vs 32-bit counter for Timer

• Can read the Counter value directly
• No need for Capture task

• Otherwise extremely similar. Just a low-power version of Timer

6

Time resolution for Real-Time Counter

𝑓TIMER =
32 KHz

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟+1

• Resolution
• Minimum: 30.517 μs, overflows in 512 seconds (24-bit Counter)

• Maximum: 125 ms, overflows in 582 hours

• Not as precise as the Timer (62.5 ns best precision)
• Possible design: use both

• Real-Time Counter for most of the waiting

• Chained into Timer for precise remaining amount of time

7

8

• Real-time Counter

• Watchdog Timer

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

Reliable systems

• What’s the most common way to solve computer problems?
• Turn it off and turn it on again.

• Why?

9

Reliable systems

• What’s the most common way to solve computer problems?
• Turn it off and turn it on again.

• Why?

• Resets “state” to original values, which are likely good

• Startup is often well-tested

• It’s long-running code interacting in unexpected ways that leaves
systems in a broken state

10

Watchdog timer (WDT)

• Focused on failures where the system “hangs” forever
• Maybe software, maybe hardware!

• Can’t know for certain the system is hung, but can know practically
• Select a timeout that is the maximum amount of time you expect the

system to ever go without looping in main()

• Multiply it by 2-10

• Set a watchdog timer to that value

• If watchdog timer ever expires, it resets the system (in hardware)

11

Watchdog configuration

timeout (seconds) =
Counter Reload Value + 1

32768

• Configure watchdog
• Can choose whether to count down during Sleep mode or Debug mode

• Set a Counter Reload Value (CRV, 32-bits)

• Start the watchdog timer
• Loads internal Counter to CRV value

• Starts counting down at 32 kHz

12

Running applications with a watchdog timer

• Need to periodically reset the watchdog to keep it from expiring
• Known as “feeding” the watchdog or “kicking” the watchdog

• Reload Request register
• Must write sequence 0x6E524635 to reload watchdog
• Incredibly unlikely to happen by accident

• While running, watchdog is protected from modification
• Configure once, run forever (at least until a reboot)
• Only option is to make periodic Reload Requests

• Default off on the nRF52833

13

Break + Open Question

• MSP430 microcontrollers start with the watchdog on by default

• What are the pros and cons of this choice?

14

15

• Real-time Counter

• Watchdog Timer

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

Callback functions

• timer_start(duration, my_timer_handler, context);

• Driver interfaces often provide a callback mechanism
• Caller provides a function which should be executed when complete

• “Context” is often provided as well (void*)
• Ability for caller to pass an argument for the callback function

• Often a pointer to a position in a structure or a shared variable to modify

16

Function pointers in C

• Harder than in Javascript or C++. Can’t define anonymous function inline
• Instead create a pointer to an existing function in your code

void myfun (int a) {

// do something here

}

void main() {

void (*fun_ptr)(int) = &myfun;

fun_ptr(10); // dereference happens automatically

}

17

Callbacks usually run in an interrupt mode

• If the interrupt handler calls the callback, the callback will be
within that same interrupt mode

• Be careful which variables you modify!!
• Same concurrency problems mentioned before

• Starts to get pretty annoying
• Embedded systems deal with concurrency issues just like OS

18

Blocking function calls

• Alternative option: blocking calls
• Do not return until request is complete

void myfun (void* context) {

(boolean)context = true; // context is the flag pointer

}

void timer_start_blocking(duration) {

boolean flag = false;

// duration, pointer, context

timer_start(duration, &myfun, &flag);

while (!flag) { }

}

19

Temp driver example

nu-microbit-base/software/apps/temp_driver/

20

21

• Real-time Counter

• Watchdog Timer

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

Interrupts are frustrating

• We do not want to block on every call

• We also do not want to deal with concurrency issues

• Alternative: one main event loop
• Polls necessary sensors

• Iterates through state machine and determine actions

• Runs at a certain frequency

22

Event loop

• Rather than polling a single driver, poll all of them
• Each time through the loop check all relevant inputs

• Respond to events that are necessary

• Sleep until ready to start again

while (1) {

time start = get_time();

boolean result = check_timer();

if (result) { check_gps(); }

adjust_throttle();

sleep(1ms – (get_time() – start));

}

23

Top-half / Bottom-half handler design

• Top half
• Implements interface that higher layers require

• Performs logic to start device requests

• Wait for I/O to be completed

• Synchronously (blocking) or asynchronously (return to event loop)

• Handle responses from the device when complete

• Bottom half
• Interrupt handler

• Continues next transaction

• Or signals for top half to continue (often with shared variable)

24

Temperature event-loop example

nu-microbit-base/software/apps/temp_event_loop/

25

26

• Real-time Counter

• Watchdog Timer

• Driver Interfaces (Blocking and Non-Blocking)

• Event Loop

Outline

