
Lecture 06
Timers

CE346 – Microprocessor System Design

Branden Ghena – Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

• Last chance for Lab1 checkoffs 5:00-6:30 today

• Don’t forget to answer the lab questions on Canvas
• You and your partner can work on them together, but submit separately

• Lab2 tomorrow!

• Project proposals due on Tuesday!
• Be sure to find a group

2

Today’s Goals

• Understand the role of clocks in a microcontroller

• Explore functionality of various timer peripherals on the Microbit

3

4

• Clocks

• Timers

• Virtualizing Resources

• Real-Time Counter

• Watchdog

Outline

What are clocks?

• Clock signals, in the microcontroller context, are oscillating square
wave signals used to latch inputs

• A clock MUST be running for (almost) anything on a
microcontroller to function (processor and peripherals)
• Exceptions:

• Low-power input interrupts
• GPIOTE port interrupt, Analog LPCOMP interrupt, NFC sense interrupt, USB power interrupt

• Reset signal

5

Generating clocks

• External crystal oscillator
• Creates clock signal
• Chunk of quartz
• Behaves like RLC circuit but

uses less energy

• Internal mechanisms
• RC oscillator

• Creates clock signal
• Less accurate and higher

energy than crystal
• Phase-Locked Loop (PLL)

• Multiply input to create
new higher frequency
clocks

6

Microbit crystal for nRF52833

7

Clocks and energy

• Fundamental tradeoff
• Faster clock gets things done faster but uses more energy

• Slower clock uses less energy but gets things done slower

• Which to use depends on the situation

• CPU bound: faster clock, IO bound: slower clock

8

Chiang et al. “Power Clocks: Dynamic Multi-Clock Management for Embedded Systems” EWSN 2021

Example of clock selection for a
mixed load (part IO, part CPU)

Energy consumed becomes a
horizontal line when the task is
completed

https://www.amitlevy.com/papers/2021-ewsn-chiang.pdf

Controlling clocks

• Some microcontrollers provide extremely fine-grained control over
clocks
• Really complicated section of code to get working

• Many combinations are invalid

• Manually enable/disable clocks as needed

• nRF52 instead gives almost no control but is easier to use
• One 64-MHz clock for processor

• Multiple peripheral clocks, but (most) peripherals are hardwired to one

• 16 MHz for almost all peripherals (PDM and I2S are 32 MHz)

• Low-frequency 32 kHz clock for low-power peripherals

• Automatically enables/disables clocks

9

nRF52833 clocks

10

Optional: for lower energy
and higher accuracy

Electrical characteristics

• Active power of clocks
• 32 kHz crystal run current: 0.23 μA

• 32 kHz RC oscillator run current: 0.70 μA

• 32 MHz crystal average run current: 300-700.00 μA

• 32 MHz standby current: 110.00 μA

• Startup time for external crystals
• 32 kHz crystal: 250-500 ms (milliseconds!!!)

• 32 MHz crystal: 60-200 μs

• Beware: switching can lead to delays and instability

• nRF52 uses RC oscillator while crystal is not yet ready

11

12

• Clocks

• Timers

• Virtualizing Resources

• Real-Time Counter

• Watchdog

Outline

Timer peripherals

• Common need for embedded systems: sense of time
• Start this behavior after a certain amount of time

• Stop this behavior after a certain amount of time

• Measure how much time passed between two events

• Timer peripherals
• Input is one of the system clocks

• Counts up a register at each clock tick

• Looking at register at start and end can give real-world duration

• Compare to saved value and trigger interrupt on match

• Allows interrupts to be scheduled in the future

13

Discussion

• What is the finest granularity you might need from a timer?
• Give an example of the use case

• What is the longest duration you might need from a timer?
• Give an example of the use case

14

Discussion

• What is the finest granularity you might need from a timer?
• Give an example of the use case

• What is the longest duration you might need from a timer?
• Give an example of the use case

• Concern: high granularity for long durations require MANY bits
• We often optimize for one of the other

15

Timer peripheral on nRF52833

16

Input and Prescaler

𝑓TIMER =
16 MHz

2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅

• Prescaler is a 4-bit number
• Possible timer input clocks: 16 MHz – 488 Hz

• Ticks counted with (up to) 32-bit internal Counter:
• Minimum 268 seconds until overflow (at 62.5 ns per tick)

• Maximum 101 days until overflow (at 2.04 ms per tick)

17

Alternate input source for counter mode

• Counter mode works
with non-timer inputs
• E.g. GPIO input event

• Count anything!

18

Capture/Compare registers (CC)

• 32-bit storage registers (each timer has multiple)
• Uses: capturing or comparing

• On Capture[n] event
• Internal Counter value copied to CC[n]

• Capture used to measure durations of events
• Capture can be triggered by software or by Events from other peripherals

• Multiple registers to measure multi-part events

19

Comparing with CC registers

• When internal Counter value equals a CC register
• Corresponding Compare[n] event is triggered

• Can trigger interrupts

• Usually written to in advance to start/stop behavior
• Toggle LED every second

• Sample sensor every five minutes

• Refresh LED matrix every 1/60 seconds

20

The nRF52833 has multiple Timer instances

21

Bonus concept: shorts

• Reminder: Tasks are inputs and Events are outputs

• Shorts connect an Event to a Task within a peripheral
• Tasks and Events are fairly nRF specific

• Timer shorts
• Connect Compare[n] to Clear

• Connect Compare[n] to Stop

22

Usage: how do we set a one second timer?

• Assume timer is already running

1. Get current time from timer

2. Add 1 second worth of ticks to it

•
16000000
2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅

is the number of ticks per second

3. Set an unused Compare register to value

4. Enable interrupts for that Compare event

23

Warning: what if
you’re setting a 1 us
timer instead? Or a
100 ns timer?

Timer could expire
before software writes
it to the peripheral.

Check your understanding

• Prescaler value is 4

• Current internal Counter value is 0x1000

• Want a 0.5 second timer

• What do you set the CC[0] register to? (32-bits)

24

𝑓TIMER =
16 MHz

2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅

Check your understanding

• Prescaler value is 4

• Current internal Counter value is 0x1000

• Want a 0.5 second timer

• What do you set the CC[0] register to? (32-bits)
• 1 MHz Timer frequency -> 500,000 ticks in 0.5 seconds

• 500000 -> 0x7A120

• Plus initial value of counter = 0x7B120

25

𝑓TIMER =
16 MHz

2𝑃𝑅𝐸𝑆𝐶𝐴𝐿𝐸𝑅

26

• Clocks

• Timers

• Virtualizing Resources

• Real-Time Counter

• Watchdog

Outline

Choosing resource amounts is a problem

• Problem: applications may require any number of resources
• Particularly in this case: peripherals

• For example, how many timers should there be?

• But hardware has to pick some number to provide
• More is wasted cost

• Too few and applications cannot succeed

• Solution: virtualize the resource

27

Virtualization pattern

• Create a queue of requests and a pool of resources
• N requests to M resources

• Application requests are queued when they come in
• Rather than serviced immediately

• While a resource is available
• Pop request from queue (by some priority)

• Service with hardware

• Wait until another resource is available

28

Example: sending serial messages

• Serial messages (such as printf() strings) are sent via UART
• UARTE peripheral (we’ll talk about this later)

• nRF52 has two UARTE peripherals
• Can be attached to any output pins

• Changing pins is a quick operation

• What if we want to talk to three serial devices?
• Console (printf output)

• GPS (NMEA)

• WiFi radio (AT commands)

29

Virtualized UART

30

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

Empty

Virtualized UART: serves request with hardware

31

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

Virtualized UART: serves until resources are full

32

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

Virtualized UART: additional requests are queued

33

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

{Serial Console, TX, 0x20000500, 20}

{Serial Console, TX, 0x20001E00, 10}

Virtualized UART: moves to next item when complete

34

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

{Serial Console, TX, 0x20000500, 20}

{Serial Console, TX, 0x20001E00, 10}

Virtualized UART: moves to next item when complete

35

Serial
Console

GPS WiFi Radio

Microcontroller

Virtual UART

UARTE0 UARTE1

Request
Queue

Application

{Serial Console, TX, 0x20001F00, 20}

{GPS, RX, 0x20001000, 150}

{WiFi Radio, TX, 0x20000020, 1500}

{Serial Console, TX, 0x20000500, 20}

{Serial Console, TX, 0x20001E00, 10}

Challenges to making virtualization work

• How fast are requests coming in?
• Requests more quickly than service are an unsatisfiable system

• How long does it take to reconfigure the resource?
• Long delays could mean high latency
• Might want to optimize for requests with same configuration first

• Need to ensure all of the configuration changes
• Common bug: forget to modify part of one register and system works most of

the time, but not in all cases

• Need ability to queue requests
• Usually stored in a linked list structure
• Dynamically… But we generally want to avoid dynamic memory

36

Dynamic resource allocation options

1. Create a queue with a maximum size in Virtual Driver
• Some number larger than the hardware picked, based on app knowledge
• Still either runs out or wastes memory

2. Just use malloc()
• Is actually possible on the nRF52 with newlib (libc implementation)
• Might run out, but then just wait for requests to complete

3. Create list nodes individually as global variables
• Application decides how many it needs at compile time
• Passes them into the Virtual Driver at first use

• “Here’s my request and a linked list node to store it in”

37

Another example: managing multiple timers

• You often have tasks that look like this:

• Most easily thought about as three separate timers
• But maybe the system doesn’t have that many timers to spare!

• Virtualization can help

38

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

39

Timer Requests
1. 10010
2. 10050
3. 10110
4. 20000

time

CC Register: 10010

10010 10050 10110 20000

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

40

Timer Requests
1. 10010, A
2. 10050, B
3. 10110, C
4. 20000, D

time

CC Register: 10010

10010 10050 10110 20000

Call timer handler A!
Update CC register and list

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

41

Timer Requests

1. 10050, B
2. 10110, C
3. 20000, D

time

CC Register: 10050

10010 10050 10110 20000

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

42

Timer Requests

1. 10050, B
2. 10110, C
3. 20000, D

time

CC Register: 10050

10010 10050 10110 20000

Call timer handler B!
Update CC register and list

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

43

Timer Requests

1. 10110, C
2. 20000, D

time

CC Register: 10110

10010 10050 10110 20000

Virtual timers

• Solution: keep a list of timer expiration times
• Soonest expiration goes in the Capture/Compare register

• Others stay in linked list, sorted by expiration

44

Timer Requests

1. 10100, E
2. 10110, C
3. 20000, D

time

CC Register: 10100

10010 10050 10110 20000

New request arrives for 10100
Enqueue and sort queue
Update CC if first request has changed

Enqueuing timer requests

• Timer requests come in the form: {N seconds from now}
• timer_request(duration, handler);

• Requests are always relative to the current time

• Need to enqueue by expiration time
• Duration + Current Time

• Allows for a globally sortable list

• Need to decide how to handle overflow logic in real world

45

Make sure not to miss timers

• Sorting list and modifying the CC register takes time
• Might have skipped right past the soonest event

• Check for this, and call handler manually if necessary

46

Timer Requests

1. 10100, E
2. 10110, C
3. 20000, D

time

CC Register: 10100

10010 10050 10110 20000

Handle 10100 event, Call E

Make sure not to miss timers

• Sorting list and modifying the CC register takes time
• Might have skipped right past the soonest event

• Check for this, and call handler manually if necessary

47

Timer Requests

1. 10110, C
2. 20000, D

time

CC Register: 10110

10010 10050 10110 20000

Update list
Update CC register
Oh no! That’s in the past!!

Make sure not to miss timers

• Sorting list and modifying the CC register takes time
• Might have skipped right past the soonest event

• Check for this, and call handler manually if necessary

48

Timer Requests

1. 20000, D

time

CC Register: 20000

10010 10050 10110 20000

Call C manually
Update list and CC register again

Some timers are periodic

• Repeating timers are easy to add to this system
• Include a Boolean for “repeating” and the duration in the request

• When timer expires
• If not repeating, just call handler and then drop it

• If repeating,

• First reinsert based on duration and new current time

• Then call the handler
• Don’t want the latency of the handler to slow us down

49

Concurrency safety

• Modifying the request structure in an interrupt context is
dangerous
• New request might be in the middle of getting added

• Interrupt would run right in the middle of that

• Literally an OS data race example

• Solution: disable interrupts during critical section
• Whenever editing request structure

• Enable interrupts after, which may result in an event

• Note: Interrupt handler might now fire but have no work to do. Should
always check if something should actually be handled first

50

Break

51

52

• Clocks

• Timers

• Virtualizing Resources

• Real-Time Counter

• Watchdog

Outline

Real-time Counter

• Low-power (32 kHz) version of Timer
• Only a 24-bit internal Counter

• Note: abbreviated RTC, but that already means something else (Real-Time Clock)

53

Differences between Real-Time Counter and Timer

• Runs off of LFCLK instead of HFCLK
• With smaller prescaler value (4096 vs 32768)

• 24-bit counter vs 32-bit counter for Timer

• Can read the Counter value directly
• No need for Capture task

• Otherwise extremely similar. Just a low-power version of Timer

54

Time resolution for Real-Time Counter

𝑓TIMER =
32 KHz

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟+1

• Resolution
• Minimum: 30.517 μs, overflows in 512 seconds (24-bit Counter)

• Maximum: 125 ms, overflows in 582 hours

• Not as precise as the Timer (62.5 ns best precision)
• Possible design: use both

• Real-Time Counter for most of the waiting

• Chained into Timer for precise remaining amount of time

55

56

• Clocks

• Timers

• Virtualizing Resources

• Real-Time Counter

• Watchdog

Outline

Reliable systems

• What’s the most common way to solve computer problems?
• Turn it off and turn it on again.

• Why?

57

Reliable systems

• What’s the most common way to solve computer problems?
• Turn it off and turn it on again.

• Why?

• Resets “state” to original values, which are likely good

• Startup is often well-tested

• It’s long-running code interacting in unexpected ways that leaves
systems in a broken state

58

Watchdog timer (WDT)

• Focused on failures where the system “hangs” forever
• Maybe software, maybe hardware!

• Can’t know for certain the system is hung, but can know practically
• Select a timeout that is the maximum amount of time you expect the

system to ever go without looping in main()

• Multiply it by 2-10

• Set a watchdog timer to that value

• If watchdog timer ever expires, it resets the system (in hardware)

59

Watchdog configuration

timeout (seconds) =
Counter Reload Value + 1

32768

• Configure watchdog
• Can choose whether to count down during Sleep mode or Debug mode

• Set a Counter Reload Value (CRV, 32-bits)

• Start the watchdog timer
• Loads internal Counter to CRV value

• Starts counting down at 32 kHz

60

Running applications with a watchdog timer

• Need to periodically reset the watchdog to keep it from expiring
• Known as “feeding” the watchdog or “kicking” the watchdog

• Reload Request register
• Must write sequence 0x6E524635 to reload watchdog
• Incredibly unlikely to happen by accident

• While running, watchdog is protected from modification
• Configure once, run forever (at least until a reboot)
• Only option is to make periodic Reload Requests

• Default off on the nRF52833 (default on for the MSP430!)

61

62

• Clocks

• Timers

• Virtualizing Resources

• Real-Time Counter

• Watchdog

Outline

