
Lecture 05
Digital Circuits

CE346 – Microprocessor System Design

Branden Ghena – Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Administrivia

• Labs
• Debrief: How did that go?

• Can use personal computers if preferred

• See schedule of Lab hours available on Canvas

• Quiz
• Today at end of class

2

Project Proposals

• It is time to start forming teams and working on Proposals
• Due next week Tuesday!

• Project details are posted to Campuswire

• Specific proposal details are on the Canvas assignment

3

Today’s Goals

• Explore a final interaction pattern: DMA

• Understand the basics of digital circuitry
• Enough to be able to interact with the Microbit

• Finish our exploration of the GPIO peripherals on the Microbit

• One step deeper in to EE-land: energy use

4

5

• DMA

• Digital Circuits

• GPIOTE

• Energy

Outline

Reminder: Polling I/O

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

6

This is the “polling”
model of I/O.

“Poll” the peripheral
in software repeatedly
to see if it’s ready yet.

Reminder: Interrupts, visually

7

Some code
that’s executing

Interrupt
triggers!

Interrupt handler
code

Continue
original code

Direct Memory Access (DMA)

• Even with interrupts, providing data to the peripheral is time
consuming
• Need to be interrupted every byte, to copy the next byte over

• DMA is an alternative method that uses hardware to do the
memory transfers for the processor
• Software writes address of the data and the size to the peripheral

• Peripheral reads data directly from memory

• Processor can go do other things while read/write is occurring

8

General-purpose DMA

9

Special-purpose DMA

• nRF52 uses “EasyDMA”, which is built into individual peripherals
• Only capable of transferring data in/out of that peripheral

• Easier to set up and use in practice

• Only available on some peripherals though (no DMA for TEMP)

10

Warning: addresses for DMA
MUST be in RAM!

Full peripheral interaction pattern

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer

4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete

6. Set up next DMA transfer

Continue on to other code, and repeat

11

12

• DMA

• Digital Circuits

• GPIOTE

• Energy

Outline

Digital signals

• Exist in two states:
• High (a.k.a. Set, a.k.a. 1)

• Low (a.k.a. Clear, a.k.a. 0)

• Simpler to interact with
• Constrained to two voltages

• With quick transitions between the
two

• No math for voltage level

• Either high or low

13

Digital signals map to voltage ranges

• Upper range
is high signal
• ~0.7*VDD

• Bottom range
is low signal
• ~0.3*VDD

• Middle is
undefined
• Only exists

during
transitions

14

http://www.sharetechnote.com/html/Electronics_CMOS.html

http://www.sharetechnote.com/html/Electronics_CMOS.html

Digital circuits

• Connecting components together with digital signals
• Mostly ICs

• Also buttons/switches and LEDs

• Way simpler than analog circuits
• Mostly connecting boxes with wires

• Plus a few resistors here and there

• An abstraction
• Not sufficient for fully understanding electronics behavior, but close

15

Switches

• Single Pole, Double Throw switch
• Middle pin (Pole) connects to one of two outer pins (Throws)

• For controlling microcontrollers
• Often connect outer pins to VCC and Ground respectively

• Input then goes High or Low depending on switch state

16
https://learn.sparkfun.com/tutorials/button-and-switch-basics/

https://learn.sparkfun.com/tutorials/button-and-switch-basics/

Buttons

• Single Pole, Single Throw switch
• Pole pin either connects to Throw pin or is disconnected

• Come in normally-closed (connected) and normally-open (disconnected)

17

Disconnected circuits

• When button is pushed, input signal is low

• What is the value of the input when the button is unpressed?

18

Disconnected circuits

• When button is pushed, input signal is low

• What is the value of the input when the button is unpressed?

• Floating! Could be any voltage

• Solution: connect weakly to either high or low voltage

19

Current flows through the “path of least resistance”

• Simplification
• Works well for the types of circuits we use

• Pull-up resistor
• When button is open (disconnected),

the only path is through the resistor

• When button is closed (connected)
the least resistance path is through
the button to Ground

20

Pull-up resistors and pull-down resistors

• Resistor sets the “default” value of a wire
• Pull-up connects to VCC

• Pull-down connects to Ground

• Usually 10-100 kΩ

• When button is open (disconnected)
• Connection through the resistor sets signal

• When button is closed (connected)
• Signal is directly connected to a voltage source

• Much lower resistance means that signal dominates

21

Buttons on the Microbit

• Normally open buttons
• Disconnected by default

• Active low signal
• Activating (pushing) button creates a low

signal

• Pull-up resistors
• Set button signal high by default

22

LEDs

• Light Emitting Diodes
• Generate light as current passes through them

• Various colors available

• Diodes
• Only allow current to go through one way

• Not particularly relevant for LEDs

• Treat as a digital component

• Connect anode to high voltage and cathode to ground
• Plus a resistor to limit the total amount of current

23

https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds

https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds

Active state for LEDs

• LEDs can be active high or active low depending on configuration
• Active high is how people assume they work

• Active low is often used instead

• GPIO pins can usually sink more current than they can source

24

LEDs on the Microbit

• Microphone LED
• Active high

• Simple to use

25

Ignore this
other part
for now

LEDs on the Microbit

• Use two GPIO pins to control each
LED
• Row high as VDD

• Column low as Ground

• Remember, connections only exist
where there are dots

26

Controlling the LED matrix

• Cannot individually control all
LEDs simultaneously
• Need to light one row at a time

• Iterate rows quickly to make
them appear on all the time

• We’ll have a lab on these later
• Combine GPIO and timers

27

Break + Question

28

• Should the spot in green have?
• Pull-up Resistor

• Pull-down Resistor

• Either

• Neither

Break + Question

29

• Should the spot in green have?
• Pull-up Resistor

• Pull-down Resistor (needs to pull input low by default)

• Either

• Neither

30

• DMA

• Digital Circuits

• GPIOTE

• Energy

Outline

Handling interrupts from GPIO

• Separate peripheral, GPIOTE (GPIO Task/Event)
• Manages up to 8 individual pins

• Can read inputs and trigger interrupts

• Can also connect outputs from events on other peripherals (PPI)

• Can trigger interrupts for a “Port event” as well

• Software checks which pin(s) caused the event to occur

• Very low power operation (works with system clocks off)

• Unclear why this is a separate peripheral
• Presumably too complicated/expensive to have 42 of them

31

Configuring individual input interrupts

• Pick an available GPIOTE channel (0-7)

• Configure it
• Port and Pin number
• Task (output), Event (input), or Disabled
• Polarity for input events

• Low-to-high
• High-to-low
• Toggle (both directions)

• Enable interrupts for channel in GPIOTE (and in NVIC!)

• Clear event in interrupt handler
• Doesn’t happen automatically

32

Sensing port events

• Uses the “Detect” signal. Generated from pin Sense configuration

33

Configuring port input interrupts

• Configure the Sense for each pin
• High or Low
• Allows different pins to have different “active” states

• Select detect mode
• Direct connection to pins
• Latched version (saved even if pin later changes back)

• Enable interrupts for port in GPIOTE (and in NVIC!)

• Clear event in interrupt handler and value in Latch register
• Doesn’t happen automatically

34

35

• DMA

• Digital Circuits

• GPIOTE

• Energy

Outline

Ohm’s Law

V = I x R

• Volts = Current times Resistance

P = I x V

• Power = Current times Voltage

• These two equations govern most of the circuit math we’ll need in
this course
• Work with resistive circuits

36

Thinking about energy

• Batteries often list energy in mA*h (milliamp – hours)
• Coin cell battery: 3v at 220 mAh

• 2x AA battery: 3v at 2000 mAh

• iPhone 11 battery: 3.7v at 3000 mAh

• nRF52833 active current: 5.6 mA (at 3v)
• Coin cell: 40 hours -> ~2 days

• 2x AA: 360 hours -> ~15 days

• iPhone 11: 535 hours -> ~22 days

• So how does any of this work???

37

Microcontroller sleep modes

• Sleep mode
• Processor stops running
• Most peripherals are disabled
• Continues until an interrupt occurs and wakes the microcontroller

• Usually a timer or GPIO input

• nRF52833 sleep mode current: 1.8 μA (GPIO port event only)
• Coin cell: 122222 hours -> ~5000 days -> ~14 years

• Low-power systems shoot for less than 1% duty cycle
• Average current of ~100 μA or less
• Warning: other stuff on the board counts!!

• LEDs are 1-10 mA each… Power is not a concern of the Microbit

38

39

• DMA

• Digital Circuits

• GPIOTE

• Energy

Outline

