
Lecture 04
Input and Output

CE346 – Microprocessor System Design

Branden Ghena – Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)



Administrivia

• Office Hours
• My office hours are: Fridays 1-2pm on Zoom (see Canvas homepage)

• Also available by request (make a post to Campuswire)

• General lab office hours will hopefully be posted this weekend?

• Lab tomorrow!
• Tech CG50

• https://www.mccormick.northwestern.edu/contact/tech-room-finder-
map.php?id=CG50&room-floor=0&room-id=259&room-ingress=

2

https://www.mccormick.northwestern.edu/contact/tech-room-finder-map.php?id=CG50&room-floor=0&room-id=259&room-ingress=


General Lab access

• We’ll double-check on Friday, but your ID cards should get you 
into CG50 at any time
• You are welcome to go in there to work on stuff 24/7

• However, Tech is doing contact tracing and needs your help
• If you are going to lab (apart from class/office hours) please send an 

email to ece-labs@northwestern.edu 24 hours in advance

• You’re not scheduling anything, and they likely won’t respond, but they’ll 
keep the info for Tech for contact-tracing purposes

• If you don’t remember 24 hours in advance:
• 2 hours, 15 minutes, 0 hours, or -1 hours are all still helpful

3

mailto:ece-labs@northwestern.edu


Today’s Goals

• How does a microcontroller interact with peripherals to perform 
input and output operations?
• Memory-Mapped I/O

• Interrupts

• DMA

• Explore reliable use of MMIO

• Discuss interaction patterns for Interrupts and DMA

• Understand General Purpose I/O (GPIO) peripherals
• And what kind of configurations they have

4



5

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• Controlling digital signals
• GPIO
• GPIOTE

• DMA

Outline



Devices are the point of computers

• Traditional systems need to 
receive input from users and
output responses
• Keyboard/mouse

• Disk

• Network

• Graphics

• Audio

• Various USB devices

• Embedded systems have the same 
requirement, just more types of IO

6

Processor

Computer

Control

Datapath

Memory Devices

Input

Output



Devices are core to useful general-purpose computing

7

Computer

Mouse

Keyboard

Ethernet

Bluetooth

Monitor

Headphones

Ethernet

Bluetooth

Input Output



Devices are essential to cyber-physical systems too

8

Computer

Lidar

Inertial 
Measurement Unit

Camera

CAN

Throttle Control

Brake Control

Wheel Rotation

CAN

Input Output



Device access rates vary by many orders of magnitude

• Rates in bit/sec

• System must be 
able to handle 
each of these
• Sometimes 

needs low 
overhead

• Sometimes 
needs to not 
wait around

9

Device Behavior Partner Data Rate (Kb/s)

Keyboard Input Human 0.2

Mouse Input Human 0.4

Microphone Output Human 700.0

Bluetooth Input or Output Machine 20,000.0

Hard disk drive Storage Machine 100,000.0

Wireless network Input or Output Machine 300,000.0

Solid state drive Storage Machine 500,000.0

Wired LAN network Input or Output Machine 1,000,000.0

Graphics display Output Human 3,000,000.0



10

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• Controlling digital signals
• GPIO
• GPIOTE

• DMA

Outline



How does a computer talk with peripherals?

• A peripheral is a hardware unit within a microcontroller
• Sort of a “computer-within-the-computer”
• Performs some kind of action given input, generates output

• We interact with a peripheral’s interface
• Called registers (actually are from EE perspective, but you can’t use them)
• Read/Write like they’re data

• How do we read/write them?
• Options:

• Special assembly instructions
• Treat like normal memory

11



Memory-mapped I/O (MMIO): treat devices like normal memory

• Certain physical addresses do not actually go to memory

• Instead they correspond to peripherals
• And any instruction that accesses memory can access them too!

• Every microcontroller I’ve
ever seen uses MMIO

12

control reg.
data reg.

0x00000000

0xFFFFFFFF

0xFFFF0000

Address



Memory map on nRF52833

• Flash 0x00000000

• SRAM 0x20000000

• APB peripherals 0x40000000
• Everything but GPIO

• AHB peripherals 0x50000000
• Just GPIO

• UICR – User Information Config

• FICR – Factory Information Config

13



Example nRF52 peripheral placement

• 0x1000 is plenty of space for each peripheral
• 1024 registers, each 32 bits

• No reason to pack them tighter than that

14



TEMP on nRF52833 example

• Internal temperature sensor
• 0.25° C resolution

• Range equivalent to microcontroller IC (-40° to 105° C)

• Various configurations for the temperature conversion (ignoring)

15



MMIO addresses for TEMP

• What addresses do we need? (ignore interrupts for now)
• 0x4000C000 – TASKS_START

• 0x4000C100 – EVENTS_DATARDY

• 0x4000C508 - TEMP

16



Accessing addresses in C

• What does this C code do?

*(uint32_t*)(0x4000C000) = 1;

17



Accessing addresses in C

• What does this C code do?

*(uint32_t*)(0x4000C000) = 1;

• 0x4000C000 is cast to a uint32_t*

• Then dereferenced

• And we write 1 to it

• “There are 32-bits of memory at 0x4000C000. Write a 1 there.”

18



Example code

• To the terminal!

19



Example code

20



Using structs to manage MMIO access

• Writing simple C code and access peripherals is great!

• Problems:
• Need to remember all these long addresses

• Need to make sure compiler doesn’t stop us!

• Solution:
• Wrap entire access in a struct!

• Compilers turn it into the same thing in the end anyways

21



C structs

• Collection of variables placed together in memory

typedef struct {

uint32_t variable_one;

uint32_t variable_two;

uint32_t array[2];

} example_struct_t;

• Placement rules - Variables are placed adjacent to each other in memory except:

• Variables are always placed at a multiple of their size
• Padding added to the end to make the total size a multiple of the biggest member

• Microcontrollers can usually ignore these: all registers are the same size!

22



Temperature peripheral MMIO struct

typedef struct {

} temp_regs_t;

23



Temperature peripheral MMIO struct

typedef struct {

uint32_t TASKS_START;

uint32_t TASKS_STOP;

uint32_t _unused_A[62];

uint32_t EVENTS_DATARDY;

uint32_t _unused_B[64+64+1];

uint32_t INTENSET;

uint32_t INTENCLR;

uint32_t _unused_C[64+64];

uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

24



Temperature peripheral MMIO struct

typedef struct {

uint32_t TASKS_START;

uint32_t TASKS_STOP;

uint32_t _unused_A[62];

uint32_t EVENTS_DATARDY;

uint32_t _unused_B[64+64+1];

uint32_t INTENSET;

uint32_t INTENCLR;

uint32_t _unused_C[64+64];

uint32_t TEMP;

} temp_regs_t;

volatile temp_regs_t* TEMP_REGS = (temp_regs_t*)(0x4000C000);

// code to access

TEMP_REGS->TASKS_START = 1;

while (TEMP_REGS->EVENTS_DATARDY == 0);

float temperature = ((float)TEMP_REGS->TEMP)/4.0;

25



Break + relevant xkcd

26https://xkcd.com/138/



27

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• Controlling digital signals
• GPIO
• GPIOTE

• DMA

Outline



What do interactions with devices look like?

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

28

This is the “polling” 
model of I/O.

“Poll” the peripheral 
in software repeatedly 
to see if it’s ready yet.



Waiting can be a waste of CPU time

1. while STATUS==BUSY; Wait
• (Need to make sure device is ready for a command)

2. Write value(s) to DATA

3. Write command(s) to COMMAND

4. while STATUS==BUSY; Wait
• (Need to make sure device has completed the request)

5. Read value(s) from Data

• Imagine a keyboard device
• CPU could be waiting for minutes before data arrives

• Need a way to notify CPU when an event occurs

• Interrupts!

29



Interrupts

• What is an interrupt?
• Some event which causes the processor to stop normal execution

• The processor instead jumps to a handler for that event

• What causes interrupts?
• Hardware exceptions

• Divide by zero, Undefined Instruction, Memory bus error

• Software

• Syscall, Software Interrupt (SWI)

• External hardware

• Input pin, Timer, various “Data Ready”

30



Interrupts, visually

31

Some code
that’s executing



Interrupts, visually

32

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler
code



Interrupts, visually

33

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler
code

Continue
original code



ARM Nested Vectored Interrupt Controller (NVIC)

• Manages interrupt requests (IRQ)
• Stores all callee saved registers on the stack

• So the handler code doesn’t overwrite them

• Moves the PC to the proper handler, a.k.a. Interrupt Service Routine (ISR)

• Restores registers after handler returns and moves PC back

34

Interrupts can 
preempt other 

interrupts!

Jump directly to 
the interrupt 

handler

Handles interrupt 
entry and exit

- Stacking
- Unstacking
- Priorities



ARM Vector table

• List of function pointers to 
handler for each 
interrupt/exception

• First 15 are architecture-
specific exceptions

• After that are 
microcontroller interrupt 
signals

35



Vector table in software

• Placed in its own section
• LD file puts it first in Flash

• Reset_Handler determines 
where software starts 
executing

• After that are all exception 
and interrupt handlers
• All function pointers to some 

C code somewhere

36



NVIC functionality

• NVIC functions
• NVIC_EnableIRQ(number)
• NVIC_DisableIRQ(number)
• NVIC_SetPriority(number, priority)

• Technically 256 priorities
• Only 8 are implemented

• Must enable interrupts in two places!
• Enabling interrupt in the peripheral will generate the signal
• Enabling interrupt in the NVIC will cause signal to jump to handler

• Priority determines which interrupt goes first
• And determines how interrupts are nested

37



Nested interrupts, visually

38

Some code
that’s executing

Interrupt 
triggers!

Interrupt handler

Continue
original code

Higher priority
Interrupt triggers!

continues

Interrupt handler



Break + Open Question

• When should a system use interrupts versus polling?

39



40

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• Controlling digital signals
• GPIO
• GPIOTE

• DMA

Outline



Digital signals

• Simplest form of I/O

• Exist in two states:
• High (a.k.a. Set, a.k.a. 1)
• Low (a.k.a. Clear, a.k.a. 0)

• Simpler to interact with
• Constrained to two voltages
• With quick transitions between the 

two

• No math for voltage level
• Either high or low

41



Digital signals map to voltage ranges

• Upper range 
is high signal
• ~0.7*VDD

• Bottom range 
is low signal
• ~0.3*VDD

• Middle is 
undefined
• Only exists 

during 
transitions

42

http://www.sharetechnote.com/html/Electronics_CMOS.html

http://www.sharetechnote.com/html/Electronics_CMOS.html


General Purpose Input/Output (GPIO)

• Read/write from/to external pins on the microcontroller
• Two possible values: high (1) or low (0)

• Basic unit of operation for microcontrollers
• Allows them to interact with buttons and LEDs

• Every microcontroller has GPIO

43



GPIO on nRF52833

44



GPIO on nRF52833

45

Abstract model of the pin.
This isn’t really how the hardware is implemented. But it’s a reasonable model for users.



GPIO on nRF52833

46

Inputs and outputs to/from the peripheral.
GPIO could be controlled by other peripherals. Controlling a pin in use by other peripherals is bad.



GPIO on nRF52833

47

Registers within the GPIO peripheral.
Configure various things about setup.



GPIO on nRF52833

48

Peripheral contents are duplicated for each output pin.
Each pin has its own registers (or portions thereof).



Multiple ports

• nRF52833 has up to 42 I/O pins
• But only 32 can fit in a single word

• Splits them into two “ports”

• Pins are named based on port
• P0.14 – Button A,  P0.23 – Button B

• P1.04 – LED column 4

49



GPIO on nRF52833

50

External pin on the microcontroller



GPIO on nRF52833

51

Output chain. Signal comes from OUT register, through output buffer, to external pin.



GPIO Output

• Outputs a high or low signal

• Output configurations
• High drive output (either for high, low, or both)

• Sources or sinks additional current
• For powering external devices

• Normal drive: ~2 mA

• High drive: ~10 mA

• Disconnect (a.k.a. High Impedance or High-Z)

• Wired-OR or Wired-AND scenarios

52



GPIO on nRF52833

53

Input chain. Signal goes from pin, through input buffer, to IN register.



GPIO Input

• Reads in a signal as either high or low

• Input Configurations
• Input buffer connect/disconnect

• Allows the pin to be disabled if not being read from

• Pull

• Disabled, Pulldown, Pullup

• Connects an internal pull up/down resistor (~13 kΩ)

• Sets default value of input

54



Electrical specifications

• High voltage range: 0.7*VDD to VDD (~2.3 volts)

• Low voltage range: Ground to 0.3*VDD (~1 volt)

• GPIO are extremely fast
• Transition time is <25 ns

• Connected directly to memory bus for faster interactions

• This allows complicated signal patterns to be replicated in software

• If they aren’t implemented as a hardware peripheral

• Known as “bit-banging”

55



Set/Clear registers

• OUT works traditionally: write a 1 for high, 0 for low

• OUTSET write a 1 to set that pin (high) zero has no effect

• OUTCLR write a 1 to clear that pin (low) zero has no effect
• Lets you modify a pin without modifying the others (or reading first)

56



57

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• Controlling digital signals
• GPIO
• GPIOTE

• DMA

Outline



Handling interrupts from GPIO

• Separate peripheral, GPIOTE (GPIO Task/Event)
• Manages up to 8 individual pins

• Can read inputs and trigger interrupts

• Can also connect outputs from events on other peripherals (PPI)

• Can trigger interrupts for a “Port event” as well

• Software checks which pin(s) caused the event to occur

• Very low power operation (works with system clocks off)

• Unclear why this is a separate peripheral
• Presumably too complicated/expensive to have 42 of them

58



Configuring individual input interrupts

• Pick an available GPIOTE channel (0-7)

• Configure it
• Port and Pin number
• Task (output), Event (input), or Disabled
• Polarity for input events

• Low-to-high
• High-to-low
• Toggle (both directions)

• Enable interrupts for channel in GPIOTE (and in NVIC!)

• Clear event in interrupt handler
• Doesn’t happen automatically

59



Sensing port events

• Uses the “Detect” signal. Generated from pin Sense configuration

60



Configuring port input interrupts

• Configure the Sense for each pin
• High or Low
• Allows different pins to have different “active” states

• Select detect mode
• Direct connection to pins
• Latched version (saved even if pin later changes back)

• Enable interrupts for port in GPIOTE (and in NVIC!)

• Clear event in interrupt handler and value in Latch register
• Doesn’t happen automatically

61



Break

62



63

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• Controlling digital signals
• GPIO
• GPIOTE

• DMA

Outline



Direct Memory Access (DMA)

• Even with interrupts, providing data to the peripheral is time 
consuming
• Need to be interrupted every byte, to copy the next byte over

• DMA is an alternative method that uses hardware to do the 
memory transfers for the processor
• Software writes address of the data and the size to the peripheral

• Peripheral reads data directly from memory

• Processor can go do other things while read/write is occurring

64



General-purpose DMA

65



Special-purpose DMA

• nRF52 uses “EasyDMA”, which is built into individual peripherals
• Only capable of transferring data in/out of that peripheral

• Easier to set up and use in practice

• Only available on some peripherals though (no DMA for TEMP)

66

Warning: addresses for DMA 
MUST be in RAM!



Full peripheral interaction pattern

1. Configure the peripheral

2. Enable peripheral interrupts

3. Set up peripheral DMA transfer

4. Start peripheral

Continue on to other code

5. Interrupt occurs, signaling DMA transfer complete

6. Set up next DMA transfer

Continue on to other code, and repeat

67



68

• I/O Motivation

• Memory-Mapped I/O

• Interrupts

• Controlling digital signals
• GPIO
• GPIOTE

• DMA

Outline


