Lecture 03
Embedded Software

CE346 — Microprocessor System Design
Branden Ghena — Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Northwestern

Today’s Goals

» Discuss challenges of embedded software

 Describe compilation and linking of embedded code

 Actually applies to all code, but you probably never learned much about
linking before

 Explore the microcontroller boot process

Outline

- Embedded Software

 Embedded Toolchain

e Lab Software Environment

* Boot Process

Assumptions of embedded programs

» Expect limitations
* Very little memory
* Very little computational power
* Very little energy

* Don't expect a lot of support
* Likely no operating system
« Might not even have error reporting capabilities

 Moral: think differently about your programs

Ramifications of limited memory

« Stack and Data sections are limited
» Be careful about too much recursion
 Be careful about large local variables

 Large data structures defined globally are preferred
» Fail at compile time

« Heap section is likely non-existent
 Why?

Ramifications of limited memory

« Stack and Data sections are limited
» Be careful about too much recursion
 Be careful about large local variables

 Large data structures defined globally are preferred
» Fail at compile time

« Heap section is likely non-existent
 Why?
« Malloc could run out of memory at runtime

Avoiding dynamic memory

» Malloc is scary in an embedded context

« What if there’s no more memory available?
 Traditional computer
« Swap memory to disk
« Worst case: wait for a process to end (or kill one)

 Embedded computer

» There’s likely only a single application
« And it’s the one asking for more memory

 So it’s not giving anything back anytime soon

» This is unlikely to happen at boot
« Instead it'll happen hours or days into running as memory is slowly exhausted...

Limitations on processing power

» Typically not all that important
 Code still runs pretty fast
« 10 MHz -> 100 ns per cycle
 Controlling hardware usually doesn’t have a lot of code complexity
 Quickly gets to the “waiting on hardware” part

* Problems
« Machine learning
 Learning on the device is neigh impossible
« Memory limitations make it hard to fit weights anyways
 Cryptography
 Public key encryption takes seconds to minutes

Common programming languages for embedded
. C

 For all the reasons that you assume
« Easy to map variables to memory usage and code to instructions

» Assembly
 Not entirely uncommon, but rarer than you might guess
« C code optimized by a modern compiler is likely faster
» Notable uses:
 Cryptography to create deterministic algorithms
» Operating Systems to handle process swaps

« C++
 Similar to C but with better library support
« Libraries take up a lot of code space though ~100 KB

Rarer programming languages for embedded

* Rust
« Modern language with safety and reliability guarantees
 Relatively new to the embedded space
« And a high learning curve

 Python, Javascript, etc.
« Mostly toy languages
* Fine for simple things but incapable of complex operations
 Especially low-level things like managing memory

10

What's missing from programming languages?

* The embedded domain has several requirements that other
domains do not

« What is missing from programming languages that it wants?
 Sense of time

« Sense of energy

11

Programming languages have no sense of time
« Imagine a system that needs to send messages to a motor every

10 milliseconds
« Write a function that definitely completes within 10 milliseconds

 Accounting for timing when programming is very challenging
« We can profile code and determine timing at runtime

« If we know many details of hardware, instructions can give timing
 Unless the code interacts with external devices

12

Determining energy use is rather complicated

» Software might

» Start executing a loop
« Turn on/off an LED
« Send messages over a wired bus to another device

» Determining energy these operations take is really difficult
« Even with many details of the hardware
» Different choices of clocks can have a large impact

 Often profiled at runtime after writing the code
« Iterative write-test-modify cycle

13

Break + Open Question

« What language/system would you prefer to write embedded
software in?

« And why?

14

Outline

 Embedded Software

« Embedded Toolchain

e Lab Software Environment

* Boot Process

Embedded compilation steps

« Same first steps as any system

1. Compiler
 Turn C code into assembly
« Optimize code (often for size instead of speed)

16

Cross compilers compile for different architectures

» The compiler we'll be using is a cross compiler
« Run on one architecture but compile code for another
« Example: runs on x86-64 but compiles armv7e-m

« GCC is named: ARCH-VENDOR-(OS-)-ABI-gcc
« arm-none-eabi-gcc
* ARM architecture
* No vendor
* No OS
« Embedded Application Binary Interface
 Others: arm-none-linux-gnueabi, i686-unknown-linux-gnu

17

Embedded compilation steps

« Same first steps as any system

1. Compiler
 Turn C code into assembly
« Optimize code (often for size instead of speed)

2. Linker

« Combine multiple C files together
 Resolve dependencies
» Point function calls at correct place
« Connect creation and uses of global variables

18

Informing linker of system memory

» Linker actually places code and variables in memory
» It needs to know where to place things

- How do traditional computers handle this?

19

Informing linker of system memory

» Linker actually places code and variables in memory
» It needs to know where to place things

- How do traditional computers handle this?
« Virtual memory allows all applications to use the same memory addresses

« Embedded solution
* Only run a single application
 Provide an LD file
 Specifies memory layout for a certain system
* Places sections of code in different places in memory

20

Anatomy of an LD file

« NRF52833: 512 KB Flash, 128 KB SRAM
* First, LD file defines memory regions

MEMORY {
FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x80000
RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x20000

}

* A neat thing about microcontrollers: pointers have meaning
« Just printing the value of a pointer can tell you if it's in Flash or RAM

21

Anatomy of an LD file

« It then places sections of code into those memory regions

.text | .data : AT (etext) {
KEEP (* (.Vectors)) __data start =
* (.text*) *(.data*)
x (. rodata*) __data end = .;
. = ALIGN (4); } > RAM
} > FLASH
__etext = .; .bss : {
. = ALIGN (4) ;
__bss start = .;
(.bss¥)
. = ALIGN (4) ;
__bss end = .;

} > RAM

.
L 4

22

Sections of code

 Where do these sections come from?

» Most are generated by the compiler
e .text, .rodata, .data, .bss
 You need to be deep in the docs to figure out how the esoteric ones work

« Some are generated by the programmer
* Allows you to place certain data items in a specific way

__attribute ((section(".foo")))
int testf(10] = {0,0,0,0,0,0,0,0,0,0};

23

Embedded compilation steps

« Same first steps as any system

1. Compiler
« Turn C code into assembly
« Optimize code (often for size instead of speed)

2. Linker
« Combine multiple C files together
» Resolve dependencies
 Point function calls at correct place
« Connect creation and uses of global variables

 Output: a binary (or hex) file

24

Example

« Demonstrated in the blink application in lab repo

» https://github.com/nu-ce346/nu-microbit-
base/tree/main/software/apps/blink

25

Outline

 Embedded Software

 Embedded Toolchain

 Lab Software Environment

* Boot Process

Embedded environments

« There are a multitude of embedded software systems
« Every microcontroller vendor has their own
« Popular platforms like Arduino

« We're using the Nordic software plus some extensions made by my
research group
« It'll be a week until that matters for the most part
« We'll start off by writing low-level drivers ourselves

27

Software Development Kit (SDK)

« Libraries provided by Nordic for using their microcontrollers
» Actually incredibly well documented! (relatively)
» Various peripherals and library tools

« SDK documentation
« https://infocenter.nordicsemi.com/topic/sdk nrf5 v16.0.0/index.html
« Warning: search doesn’t really work

« Most useful link is probably to the list of data structures
» https://infocenter.nordicsemi.com/topic/sdk nrf5 v16.0.0/annotated.html

28

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/index.html
https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/annotated.html

NRF52x-base

« Wrapper built around the SDK by Lab11
« Branden Ghena, Brad Campbell (UVA), Neal Jackson, a few others
 Allows everything to be used with Makefiles and command line
e https://github.com/lab11/nrf52x-base

« We include it as a submodule
» It has a copy of the SDK code and softdevice binaries
« It has a whole Makefile system to include to proper C and H files

« We include a Board file that specifies our specific board’s needs and
capabilities

GO to repo to explain

29

https://github.com/lab11/nrf52x-base

Break

30

Outline

 Embedded Software

 Embedded Toolchain

e Lab Software Environment

 Boot Process

How does a microcontroller start running code?

* Power comes on
 Microcontroller needs to start executing assembly code

* You expect your main() function to run
« But a few things need to happen first

32

Step 0: set a stack pointer

» Assembly code might need to write data to the stack
 Might call functions that need to stack registers

« ARM: Valid address for the stack pointer is at address 0 in Flash
» Needs to point to somewhere in RAM

« Hardware loads it into the Stack Pointer when it powers on

33

Step 1: set the program counter (PC)

* a.k.a. the Instruction Pointer (IP) in x86 land
« ARM: valid instruction pointer is at address 4 in Flash
» Could point to RAM, usually to Flash though

« Automatically loaded into the PC after the SP is loaded
 Again, hardware does this

34

Step 2: “reset handler” prepares memory

« Code that handles system resets
» Either reset button or power-on reset
 Address was loaded into PC in Step 1

* Reset handler code:
« Loads initial values of .data section from Flash into RAM
e Loads zeros as values of .bss section in RAM
 Calls SystemInit
« Handles various hardware configurations/errata
« Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/gcc startup nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5 sdk 16.0.0/modules/nrfx/mdk/system nrf52.c

35

https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S
https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

Step 3: set up C runtime

e _start is provided by newlib
« An implementation of libc — the C standard library
o Startup is a file usually named crt0

« Does more setup, almost none of which is relevant for our system
 Probably is this code that actually zeros out .bss
« Sets argcand argvto 0
 Calls main() !

https://sourceware.org/git/qgitweb.cqi?p=newlib-cygwin.qgit;a=blob plain;f=libgloss/arm/crt0.S;hb=HEAD

36

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

Online writeup with way more details and a diagram

 Relevant guide!!

« https://embeddedar
tistry.com/blog/2019

/04/17/exploring-
startup-
implementations-
newlib-arm/

« Covers the nRF52!

v!-

Key

Reset_Hamdler Syaterminit
x|y N
> mermset
4:
hardware_init_hook
>
bart 5
foware_ini k
. 50 _init_hoo
B: 7
> atexit > __register_exitproc
10: |y 8: 9:
—libe_init_array _imit
»> : >
Frain
11: * 12
__call_exitprocs
_'p
exit
13: 14:
_exit _kill_shared
»> »>

nRF52

Mewlib

Application

37

https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/

Outline

 Embedded Software

 Embedded Toolchain

e Lab Software Environment

* Boot Process

