
Lecture 03
Embedded Software

CE346 – Microprocessor System Design

Branden Ghena – Fall 2021

Some slides borrowed from:
Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Today’s Goals

• Discuss challenges of embedded software

• Describe compilation and linking of embedded code
• Actually applies to all code, but you probably never learned much about

linking before

• Explore the microcontroller boot process

2

3

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Boot Process

Outline

Assumptions of embedded programs

• Expect limitations
• Very little memory

• Very little computational power

• Very little energy

• Don’t expect a lot of support
• Likely no operating system

• Might not even have error reporting capabilities

• Moral: think differently about your programs

4

Ramifications of limited memory

• Stack and Data sections are limited
• Be careful about too much recursion

• Be careful about large local variables

• Large data structures defined globally are preferred

• Fail at compile time

• Heap section is likely non-existent
• Why?

5

Ramifications of limited memory

• Stack and Data sections are limited
• Be careful about too much recursion

• Be careful about large local variables

• Large data structures defined globally are preferred

• Fail at compile time

• Heap section is likely non-existent
• Why?

• Malloc could run out of memory at runtime

6

Avoiding dynamic memory

• Malloc is scary in an embedded context

• What if there’s no more memory available?
• Traditional computer

• Swap memory to disk
• Worst case: wait for a process to end (or kill one)

• Embedded computer
• There’s likely only a single application
• And it’s the one asking for more memory
• So it’s not giving anything back anytime soon

• This is unlikely to happen at boot
• Instead it’ll happen hours or days into running as memory is slowly exhausted…

7

Limitations on processing power

• Typically not all that important
• Code still runs pretty fast

• 10 MHz -> 100 ns per cycle

• Controlling hardware usually doesn’t have a lot of code complexity

• Quickly gets to the “waiting on hardware” part

• Problems
• Machine learning

• Learning on the device is neigh impossible

• Memory limitations make it hard to fit weights anyways

• Cryptography

• Public key encryption takes seconds to minutes

8

Common programming languages for embedded

• C
• For all the reasons that you assume
• Easy to map variables to memory usage and code to instructions

• Assembly
• Not entirely uncommon, but rarer than you might guess
• C code optimized by a modern compiler is likely faster
• Notable uses:

• Cryptography to create deterministic algorithms
• Operating Systems to handle process swaps

• C++
• Similar to C but with better library support
• Libraries take up a lot of code space though ~100 KB

9

Rarer programming languages for embedded

• Rust
• Modern language with safety and reliability guarantees

• Relatively new to the embedded space

• And a high learning curve

• Python, Javascript, etc.
• Mostly toy languages

• Fine for simple things but incapable of complex operations

• Especially low-level things like managing memory

10

What’s missing from programming languages?

• The embedded domain has several requirements that other
domains do not

• What is missing from programming languages that it wants?
• Sense of time

• Sense of energy

11

Programming languages have no sense of time

• Imagine a system that needs to send messages to a motor every
10 milliseconds
• Write a function that definitely completes within 10 milliseconds

• Accounting for timing when programming is very challenging
• We can profile code and determine timing at runtime

• If we know many details of hardware, instructions can give timing

• Unless the code interacts with external devices

12

Determining energy use is rather complicated

• Software might
• Start executing a loop

• Turn on/off an LED

• Send messages over a wired bus to another device

• Determining energy these operations take is really difficult
• Even with many details of the hardware

• Different choices of clocks can have a large impact

• Often profiled at runtime after writing the code

• Iterative write-test-modify cycle

13

Break + Open Question

• What language/system would you prefer to write embedded
software in?
• And why?

14

15

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Boot Process

Outline

Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for size instead of speed)

16

Cross compilers compile for different architectures

• The compiler we’ll be using is a cross compiler
• Run on one architecture but compile code for another

• Example: runs on x86-64 but compiles armv7e-m

• GCC is named: ARCH-VENDOR-(OS-)-ABI-gcc
• arm-none-eabi-gcc

• ARM architecture

• No vendor

• No OS

• Embedded Application Binary Interface

• Others: arm-none-linux-gnueabi, i686-unknown-linux-gnu

17

Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly

• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together

• Resolve dependencies

• Point function calls at correct place

• Connect creation and uses of global variables

18

Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do traditional computers handle this?

19

Informing linker of system memory

• Linker actually places code and variables in memory
• It needs to know where to place things

• How do traditional computers handle this?
• Virtual memory allows all applications to use the same memory addresses

• Embedded solution
• Only run a single application

• Provide an LD file

• Specifies memory layout for a certain system

• Places sections of code in different places in memory

20

Anatomy of an LD file

• nRF52833: 512 KB Flash, 128 KB SRAM

• First, LD file defines memory regions

MEMORY {

FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x80000

RAM (rwx) : ORIGIN = 0x20000000, LENGTH = 0x20000

}

• A neat thing about microcontrollers: pointers have meaning
• Just printing the value of a pointer can tell you if it’s in Flash or RAM

21

Anatomy of an LD file

• It then places sections of code into those memory regions

.text : {

KEEP(*(.Vectors))

(.text)

(.rodata)

. = ALIGN(4);

} > FLASH

__etext = .;

22

.data : AT (__etext) {

__data_start__ = .;

(.data)

__data_end__ = .;

} > RAM

.bss : {

. = ALIGN(4);

__bss_start__ = .;

(.bss)

. = ALIGN(4);

__bss_end__ = .;

} > RAM

Sections of code

• Where do these sections come from?

• Most are generated by the compiler
• .text, .rodata, .data, .bss

• You need to be deep in the docs to figure out how the esoteric ones work

• Some are generated by the programmer
• Allows you to place certain data items in a specific way

__attribute__((section(".foo")))

int test[10] = {0,0,0,0,0,0,0,0,0,0};

23

Embedded compilation steps

• Same first steps as any system

1. Compiler
• Turn C code into assembly
• Optimize code (often for size instead of speed)

2. Linker
• Combine multiple C files together
• Resolve dependencies

• Point function calls at correct place
• Connect creation and uses of global variables

• Output: a binary (or hex) file

24

Example

• Demonstrated in the blink application in lab repo
• https://github.com/nu-ce346/nu-microbit-

base/tree/main/software/apps/blink

25

26

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Boot Process

Outline

Embedded environments

• There are a multitude of embedded software systems
• Every microcontroller vendor has their own

• Popular platforms like Arduino

• We’re using the Nordic software plus some extensions made by my
research group
• It’ll be a week until that matters for the most part

• We’ll start off by writing low-level drivers ourselves

27

Software Development Kit (SDK)

• Libraries provided by Nordic for using their microcontrollers
• Actually incredibly well documented! (relatively)

• Various peripherals and library tools

• SDK documentation
• https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/index.html

• Warning: search doesn’t really work

• Most useful link is probably to the list of data structures
• https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/annotated.html

28

https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/index.html
https://infocenter.nordicsemi.com/topic/sdk_nrf5_v16.0.0/annotated.html

nRF52x-base

• Wrapper built around the SDK by Lab11
• Branden Ghena, Brad Campbell (UVA), Neal Jackson, a few others
• Allows everything to be used with Makefiles and command line
• https://github.com/lab11/nrf52x-base

• We include it as a submodule
• It has a copy of the SDK code and softdevice binaries
• It has a whole Makefile system to include to proper C and H files
• We include a Board file that specifies our specific board’s needs and

capabilities

• Go to repo to explain

29

https://github.com/lab11/nrf52x-base

Break

30

31

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Boot Process

Outline

How does a microcontroller start running code?

• Power comes on

• Microcontroller needs to start executing assembly code

• You expect your main() function to run
• But a few things need to happen first

32

Step 0: set a stack pointer

• Assembly code might need to write data to the stack
• Might call functions that need to stack registers

• ARM: Valid address for the stack pointer is at address 0 in Flash
• Needs to point to somewhere in RAM

• Hardware loads it into the Stack Pointer when it powers on

33

Step 1: set the program counter (PC)

• a.k.a. the Instruction Pointer (IP) in x86 land

• ARM: valid instruction pointer is at address 4 in Flash
• Could point to RAM, usually to Flash though

• Automatically loaded into the PC after the SP is loaded

• Again, hardware does this

34

Step 2: “reset handler” prepares memory

• Code that handles system resets
• Either reset button or power-on reset
• Address was loaded into PC in Step 1

• Reset handler code:
• Loads initial values of .data section from Flash into RAM
• Loads zeros as values of .bss section in RAM
• Calls SystemInit

• Handles various hardware configurations/errata
• Calls _start

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S

nu-microbit-base/software/nrf52x-base/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

35

https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/gcc_startup_nrf52833.S
https://github.com/lab11/nrf52x-base/blob/master/sdk/nrf5_sdk_16.0.0/modules/nrfx/mdk/system_nrf52.c

Step 3: set up C runtime

• _start is provided by newlib
• An implementation of libc – the C standard library

• Startup is a file usually named crt0

• Does more setup, almost none of which is relevant for our system
• Probably is this code that actually zeros out .bss

• Sets argc and argv to 0

• Calls main() !!!

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

36

https://sourceware.org/git/gitweb.cgi?p=newlib-cygwin.git;a=blob_plain;f=libgloss/arm/crt0.S;hb=HEAD

Online writeup with way more details and a diagram

• Relevant guide!!
• https://embeddedar

tistry.com/blog/2019
/04/17/exploring-
startup-
implementations-
newlib-arm/

• Covers the nRF52!

37

https://embeddedartistry.com/blog/2019/04/17/exploring-startup-implementations-newlib-arm/

38

• Embedded Software

• Embedded Toolchain

• Lab Software Environment

• Boot Process

Outline

