Lecture 1 Introduction

CE346 – Microprocessor System Design Branden Ghena – Fall 2021

Some slides borrowed from: Josiah Hester (Northwestern), Prabal Dutta (UC Berkeley)

Welcome to CE346!

- Focus on hardware/software systems and their design
 - Hardware/Software co-design
 - How do you write software that interacts with hardware?
 - How do you choose hardware to support software needs?
 - Sensors and Sensing
 - What can sensors do and how do they work?
 - How do you write applications that sense the world?

COVID

- We're all figuring this out together
 - Please be patient and empathetic, and we will be too
- Masks in class/office hours are mandatory

- If you are sick, do not come to class
 - We'll be flexible with deadlines if we need to be
 - Lectures are being recorded automatically
- Contact me (via Campuswire) and we'll figure it out

Today's Goals

What are the goals of this course?

Why do I think embedded systems are so important?

How is the course going to operate?

Outline

Who and Why

Embedded Systems

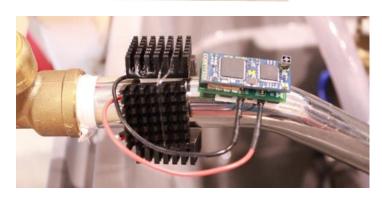
Course Overview

Branden Ghena (he/him)

- Assistant Faculty of Instruction
- Education
 - Undergrad: Michigan Tech
 - Master's: University of Michigan
 - PhD: University of California, Berkeley
- Research
 - Resource-constrained sensing systems
 - Low-energy wireless networks
 - Embedded operating systems
- Teaching
 - Computer Systems
 - Intro to Computer Systems
 - Operating Systems
 - Wireless Protocols for the IoT

Örder Stick

Research area: resource-constrained embedded systems



- Most interesting to me: the interfaces
 - Hardware and software
 - Applications and OS
 - Communication

Faculty: now I can choose what to teach!

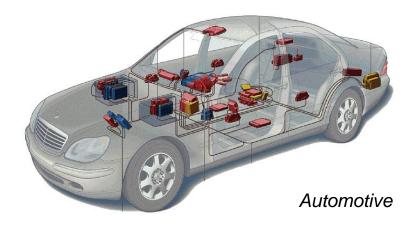
- Goal: provide classes that teach more advanced embedded systems topics
 - Hopefully, generally useful to other nearby domains of CS and ECE too!
- An immediate result: this course!
 - And this year we get to be in person!!
 - Course goal: introduce students to hardware-software interactions
 - Practical hands-on experience with microcontrollers and sensors
 - Open-ended project where students can choose their specific focus

Outline

Who and Why

Embedded Systems

Course Overview

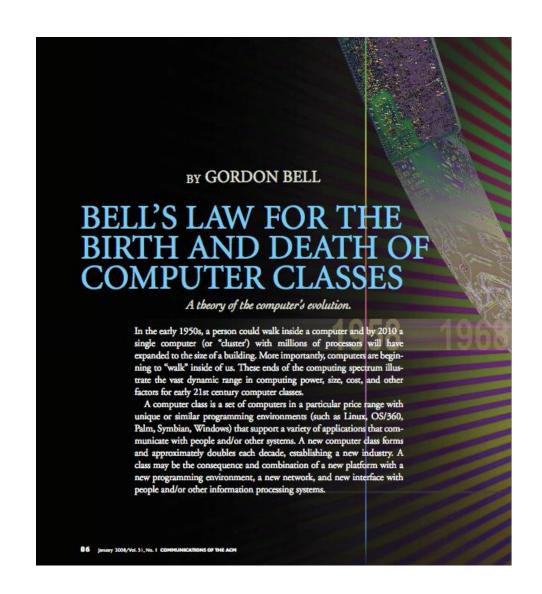

What is an embedded system?

- A computer built into a device such that the device is interacted with, not the computer
 - Not a desktop, laptop, server, smartphone, smartwatch
 - (although many of those deal with overlapping hardware/software issues)

- Many domains
 - Robotics
 - Industrial processes
 - Smart home
 - Smart city
 - Wearables and health sensing
 - Generally: Internet of Things

Related area: Cyber-Physical Systems

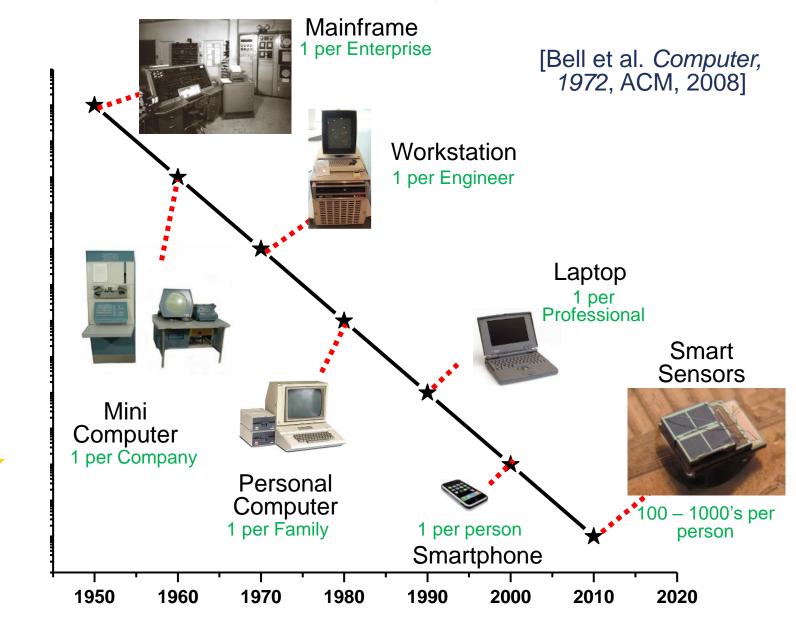
- Systems that are part computational and part real-world
 - Example: autonomous vehicles
- Combines multiple fields to handle this problem
 - Embedded Systems
 - Electronics
 - Controls
 - Software Engineering
 - Computer Theory


The Internet of Things

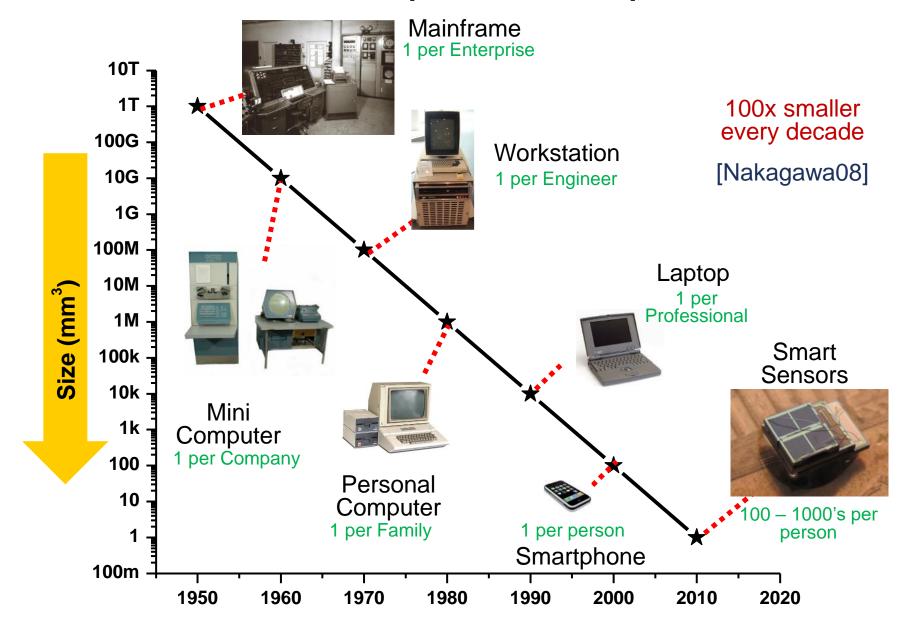
Bell's Law: A new computer class every decade

"Roughly every decade a new, lower priced computer class forms based on a new programming platform, network, and interface resulting in new usage and the establishment of a new industry."

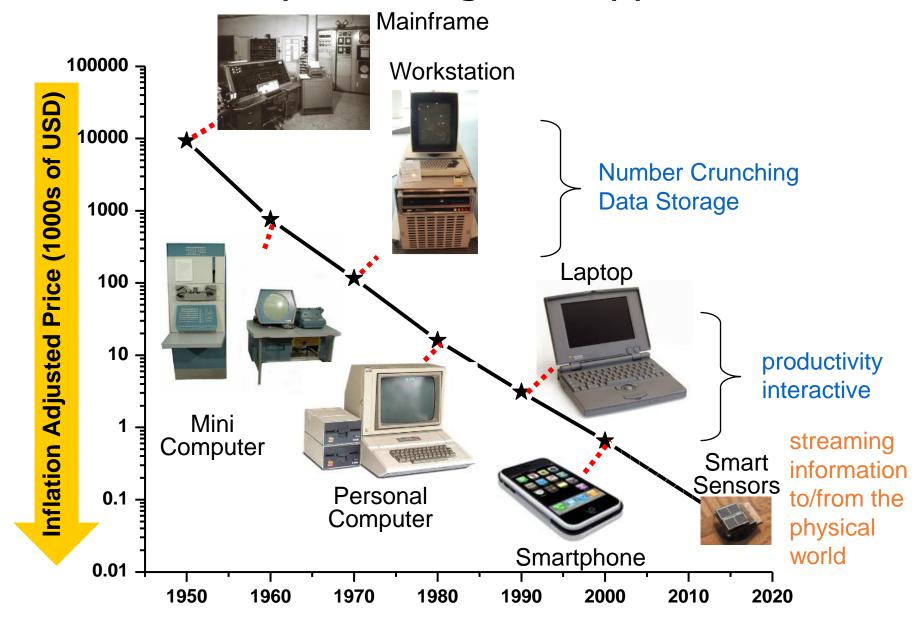
- Gordon Bell [1972,2008]



Number of computers per person grows over time


per computer)

eldoed)


log

Computer volume shrinks by 100x every decade

Price falls dramatically, enabling new applications

Discussion: what is the Internet of Things?

1. Name a few Internet of Things devices

2. What are the qualities that designate those devices at "IoT"?

Discussion: what is the Internet of Things?

1. Name a few Internet of Things devices

2. What are the qualities that designate those devices at "IoT"?

Thought experiment on capabilities

- What if the Nest thermostat was powered by an entire desktop?
 - 8-core x86-64 processor, 32 GB RAM, 1 TB SSD

Would that still count as IoT?

Could that still be an embedded system?

Why don't we see that in practice?

Thought experiment on capabilities

- What if the Nest thermostat was powered by an entire desktop?
 - 8-core x86-64 processor, 32 GB RAM, 1 TB SSD
- Would that still count as IoT?
 - Doesn't really feel right. Built in assumption of limitations.
- Could that still be an embedded system?
 - Yes
- Why don't we see that in practice?
 - Cost

Thought experiment on energy

IoT devices include a mix of batteries, wall power, (and energy-harvesting)

- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

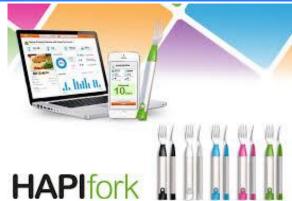
Thought experiment on energy

IoT devices include a mix of batteries, wall power, (and energy-harvesting)

- Why do we put so much focus on systems with batteries?
 - Why do they need batteries?

Deployability

Branden's take on the Internet of Things


- Key features
 - Computation
 - Local to the device
 - With some capability for arbitrary compute and storage
 - Connectivity
 - Almost certainly wireless
 - Likely Internet, possibly local
 - Interaction
 - Sensing or Actuation
- Secondary features
 - Low energy
 - (Relatively) Low cost

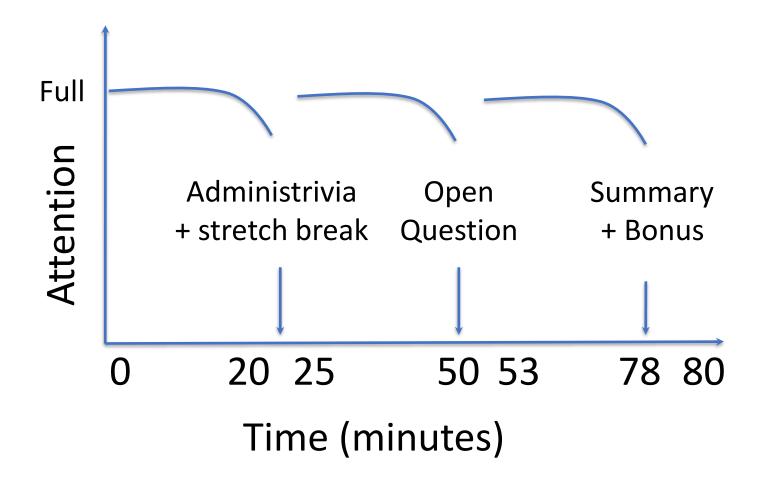
Warning: Internet of Crap

Internet of Insecure Crap

- Mirai botnet (2016)
- Takes control of up to 600,000 insecure connected devices
 - IP-attached cameras, DVRs, routers, printers
- Used to DoS websites

What makes resource-constrained embedded systems interesting?

- Focus on the real world
 - You can actually see the purpose and effects of your applications
 - Easily explainable to non-engineer humans


- Challenging limitations
 - Limited memory and processing
 - Energy concerns

What makes resource-constrained embedded systems frustrating?

- Challenging limitations
 - Limited memory and processing
 - Energy concerns

- Full-stack development means problems could be anywhere
 - Hardware problems
 - Firmware problems
 - Software problems

Architecture of a lecture

Outline

Who and Why

Embedded Systems

Course Overview

Course Time

- Lecture: Tuesdays and Thursdays 3:30-4:50pm, Tech A110
- Lab: Fridays 10:00-11:50am, Tech CG50
- No lab this week!

- Labs start next week Friday and are weekly from there
 - Six labs total
 - When labs run out, I'll use the time for project meetings with groups

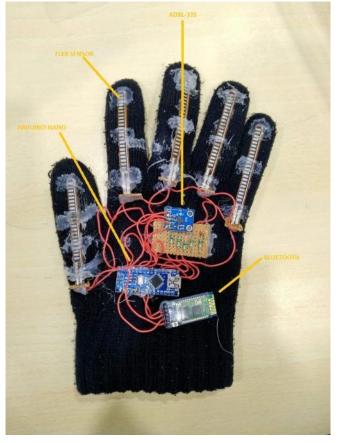
Course grade components

- 42% Labs
 - 6 labs at 7% each
 - Guided exploration of course concepts
 - Staff gives checkoffs as you complete parts
- 20% Quizzes
 - Four timed quizzes at 5% each
 - Covers lecture material from last two weeks
 - Probably in-class at the end of class, I'll update you in advance
- 38% Final Project
 - Open-ended group project (will explain in a minute)

Labs

- 1. MMIO and Interrupts
- 2. Virtual Timers
- 3. LED Matrix
- 4. Breadboarding
- 5. Audio Input/Output
- 6. I2C Accelerometer/Magnetometer

- Labs will be partner work
- Due one week from start of lab


Final projects

- Opportunity for you to apply your interests to this course
 - In groups of 2-3 students (maybe 4 for a really big idea)
- Demonstrate course knowledge through any application
 - Microbit
 - Various hardware I'll have on hand
 - Small budget for purchasing additional stuff

Project Ideas

- Some ideas to get you thinking
 - Game with interesting control mechanism
 - Smart gloves
 - Smartwatch
 - Simple robotic systems (example: plotter)
- Projects can use
 - Multiple Microbits
 - A personal computer for some amount of coordination
 - Lots of different sensors or actuators
 - Go explore sparkfun.com

Project Logistics

- Week 4: Proposals due
 - I'll get you feedback in a week
- Week 6: Project Design Presentations
 - Short presentations in class about your proposed project and design
 - Chance to give each other useful feedback about how to proceed
- Week 8-9: Labs are done and Fridays are used for update meetings
- Week 11: Live project demos!!
 - Currently scheduled as in-class
 - Might have a public demo session as well

Course Staff and Office Hours

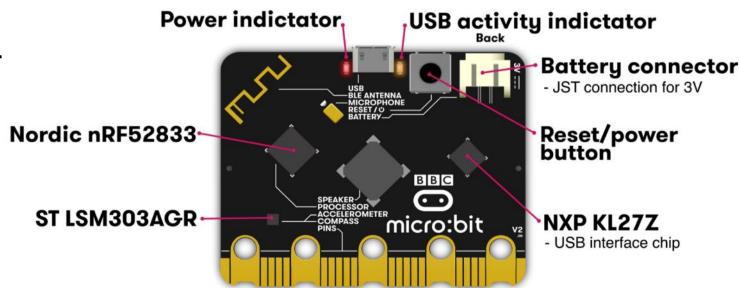
- Two PMs who took the course this past spring
 - Kevin Zhu
 - Will Phillips
 - They will help out during labs and also provide lab office hours

- Office Hours: TBD
 - We'll post a schedule soon
 - Also by request! (especially during projects)

Course Communication

- Campuswire
 - You should all already be registered on it
 - If you aren't, let me know! (or if you want to change emails)

- All course communication goes through Campuswire, not email
 - Multiple people can respond to you
 - Messages are kept in one place and stay "unanswered"
 - You can post directly to "Instructors & TAs" if it is private
 - Use that feature to request office hour appointments if desired


Flexibility

- Sometimes stuff just doesn't work
 - Especially when we're working with hardware
- We can be flexible about those deadlines
 - If you're having problems and tell us
 - Less flexible if you don't communicate or if you started late
- Takeaway: let us know if you're having problems
 - Especially being remote, it's hard for us to spot this

Micro:bit v2

- Legacy from 1980s
 "BBC Computer Literacy Project"
 - Reimagined today
- Micro USB Front Touch sensitive logo Microphone - LED indicator - Hole for microphone input LED matrix 5x5 **User buttons** Analogue/Digital I/O-External supply - Muxable to SPI, UART, I2C - Regulated 3.3V in or - Notched pads for crocodile clips battery out - Holes for banana plugs **Edge Connector**

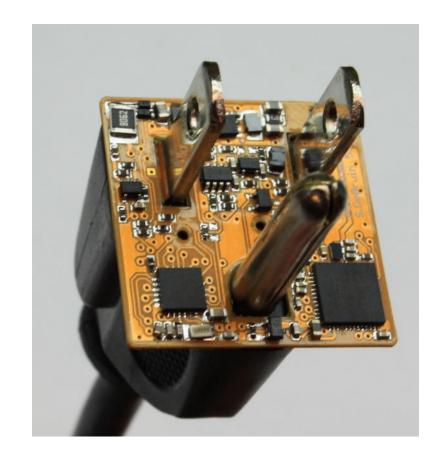
- Under \$20
 - Modern microcontroller AND sensors
- Plan for class:
 - Explore most of its functionality

Working on your own machine

- Getting Started Lab
 - https://docs.google.com/document/d/1dxjVgK7TlFbclEvBSpXaN4LK6Zrd_0 4iUUbbkXI8Vak/edit?usp=sharing
- Generally, CG50 should have plenty of availability outside of lab sessions
 - Plus staff will hold office hours to provide checkoffs
- But it might be nice to have your own personal setup too
 - If you've already got a Linux install, you can just install the programs

Outline

Who and Why

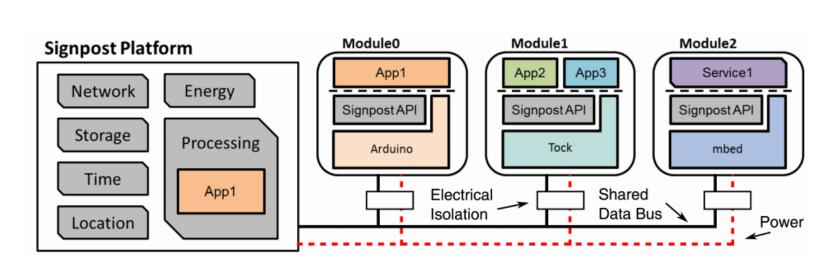

Embedded Systems

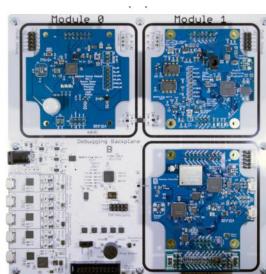
Course Overview

PowerBlade – Smart Home

- Plug-load power meter
 - How do we measure *every* device in a home?
- Challenges
 - Deployability
 - Powering it
 - Sensing AC current and voltage
 - Reporting measurements

https://www.youtube.com/watch?v=oNUXhCDnHoE




Signpost – City-Scale Sensing

 How do we reduce the burden of cityscale sensing experimentation?

- Platform provides resources
 - Modules provide sensor and application

